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ON I-CONVERGENT DOUBLE SEQUENCE SPACES
DEFINED BY A COMPACT OPERATOR AND MODULUS
FUNCTIONS
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ABSTRACT. In this paper we introduce and study I-convergent double
sequence spaces 253 (F,p), 2S(F,p) and 2S% (F,p) with the help of
compact operator T' on the real space R and a sequence of modulus
functions F' = (fi;). We investigate some topological and algebraic
properties, and also prove some inclusion relations on these spaces.
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1. INTRODUCTION

The initial works on double sequences is found in Bromwich [3]. Later on,
it was studied by Hardy [4], Moricz [13], Moricz and Rhoades [14], Basarir
and Sonalcan [2] and many others. Hardy [4] introduced the notion of regular
convergence for double sequences. Mursaleen and Edely [15] have recently
introduced the statistical convergence in double sequence spaces. The no-
tion of ideal convergence in double sequences was introduced by Tripathy
and Tripathy [23].

Throughout the paper N, $3 and C denote the sets of positive integers, real
numbers and complex numbers, respectively. A complex double sequence is
a function  from N x N into C and briefly denoted by {z;;} and we denote
all double sequence spaces with qw. By the convergence of a double se-
quence we mean the convergence in Pringsheim sense i.e., a double sequence
2 = (z;) has Pringsheim limit L ( denoted by P —limx = L) provided that
given € > 0 there exists n € N such that |z;; — L| < € whenever i,j > n
[17]. The double sequence = = (x;;) is said to be bounded if there exists a
positive number K such that |z;;| < K for all ¢ and j.

Let X and Y be two normed linear spaces. An operator T': X — Y is said
to be a compact linear operator (or completely continuous linear operator),
if

(i) T is linear.
(ii) T maps every bounded sequence (zj) in X onto a sequence T (zy)
in Y which has a convergent subsequence.
The set of all compact linear operators C(X,Y) is a closed subspace of
B(X,Y) and C(X,Y) is a Banach space if Y is a Banach space. Throughout
the paper we denote by 20, 2¢ and 2¢y the Banach spaces of bounded,
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convergent and null double sequences of reals respectively, with the norm

2] = sup |z] .
ijeN

The idea of modulus was structured by Nakano in 1953 [16].
A function f : [0,00) — [0,00) is called a modulus function if
(i) f(t) =0if and only if ¢t = 0,
(i) ft+u) < f(t)+ f(u) for all t,u >0,
(iii) f is non decreasing, and
(iv) f is continuous from the right at zero.
Ruckle [18-20] used the idea of a modulus function f to construct the
sequence space

X(f) = {fﬂ— (z) : Y flla]) < 00}'
=1

This space is an FK -space, and Ruckle [20] proved that the intersection
of all such X(f) spaces is ¢, the space of all finite sequences. The space
X(f) is closely related to the space ¢1 which is an X (f) space with f(z) =z
for all real x > 0. Ruckle [18-20] further proved that, for any modulus f,
X(f) C by and X(f)* C ls, where

X(f)* = {y = () : Y Fllyis]) < oo}.
k=1

The space X (f) is a Banach space with respect to the norm ||z|| = Y77, f(Jax|) <
oo [20]. Later on Kolk [8, 9] gave an extension of X (f) by considering a
sequence of modulus F' = f; and defined the sequence space

X(F) = {fv—(fﬂk) 2> fella]) GX}~

k=1
The following well known inequality will be used throughout the article.
Let p = (pij) be any sequence of positive real numbers with 0 < p;; <
sup,; pij = H, D = max{1,2X1} then
(1) |aij + bij["7 < D (lai["7 + [bi["7)
for all a;j,b;; € C and (i, j) € NxN. Also |a|P < max{1, |a|"} for all a € C.

In the next section we give some basic definitions that are used throughout
the paper.

2. DEFINITIONS AND PRELIMINARIES

Definition 2.1 Let X be a non-empty set, then a family of sets I c 2% (
the class of all subsets of all X ) is called an ideal in X if
(i) pel,
(ii) I is additive i.e., AABelI = AUBEeI,
(iii) I is hereditary i.e., A€ I and BC A= Be .
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A non-empty family of sets F' C 2% is a filter on X if and only if ® ¢ I,
for each A, B € F' we have AN B € F and each A € F and each A C B, we
have B € F. An ideal I is called non-trivial ideal if each I # ® and X ¢ I.
Evidently I ¢ 2% is a non-trivial ideal if and only if F = F(I) = {X — A :
A € I} is afilter on X. A non-trivial ideal I C 2% is called admissible if and
only if {{z} : z € X} C I. A non-trivial ideal I is maximal if there cannot
exist any non-trivial J # I containing I as a subset. For each ideal I there
is a filter J(I) corresponding to I i.e.,

JI)={KCI:K€cl where KY=N-K}.

Definition 2.2 A double sequence (z) = (z;;) €2 w is said to be I-
convergent to a number L ( denoted by I —limx = L ) if for every ¢ > 0,
we have

{i,jGNZ|IL’Z‘j—L|Z€}€I.
Definition 2.3 A double sequence (z;;) €2 w is said to be I-null if number
L = 0. In this case we write I —limz = 0.

Definition 2.4 A double sequence (z;;) €2 w is said to be I-Cauchy if for
every € > 0, there exist numbers m = m(e), n = n(e) such that

{i,j eN: |£E¢j *xmn‘ > 6} el.
Definition 2.5 A double sequence space F is said to be solid or normal if
(xi;) € E implies that (a;;xi;) € E for all sequences of scalars («;;) with
laij| < 1 for all i,j € N.

Definition 2.6 A double sequence space E is said to be symmetric if
(7,(ij)) € £ whenever (z;;) € E where (7;) and (7;) is a permutation on N.

Definition 2.7 A double sequence space E is said to be a sequence algebra
if (xi; - yi5) € E whenever (z;5) € E, (yi5) € E.

Definition 2.8 A double sequence space F is said to be convergence free if
(yij) € E whenever (z;;) € E and z;; = 0 implies y;; = 0.

Definition 2.9 Let K = {(n;,k;) :4,j e Nyny <ng <mng... and k3 <ky <ks...}

C N x N and F be a double sequence space. A K-step of E is a sequence
space

Mo = {z = (Tny) €2 w : (wij) € E}.
Definition 2.10 A canonical pre-image of a sequence (znk;) € E is a
sequence (byy) € E defined as follows:

b — Tk forn,k € K
nk 0 otherwise.

Definition 2.11 A double sequence space E is said to be monotone if it
contains the canonical preimages of its step spaces.

The notion of ideal convergence (I-convergence) was first introduced by
Kostyrko et al. [10] as a generalization of statistical convergence of sequences
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in a metric space and studied some properties of such convergence. Since
then many researchers have studied these subjects and obtained various in-
teresting results using ideal convergence see ( [ 11, 5,6, 21 ] ).

We use the following lemmas for proving some results of this paper.

Lemma 2.1 (24, 25). Let E be a sequence space. If E is solid then E is
monotone.

Lemma 2.2 (25). Let K ¢ 3(I), and M C N. If M ¢ I, then MNK &1 .

Lemma 2.3 (10, Lemma 5.1). If I ¢ 2Y and M C N. If M & I, then
MAON¢1.

Following Basar and Altay [1], Malkowsky [12] and Sengonul [ 22], Khan
et. al. [7] introduced the sequence spaces ST(f), S{(f) and SL (f) as follows:

ST(f)={x = (x1) €lo : {k €N: f(|T(xx) — L| > €) € I}, for some L € C}
So(f) = {z = () € loo : {k €N: f (|T(x4)| > ) € I}},
SL(f) ={z = (24) €l : {(kEN: IK >0 f(|T(a)| > K) € I}}.

3. CONSTRUCTION OF NEW DOUBLE SEQUENCE SPACES

This section brings to limelight new I-convergent double sequence spaces
with the help of compact operator T' and a sequence of modulus functions

F=(fij).

Let F = (fi;) be a sequence of modulus functions and p = (p;;) be
a sequence of positive real numbers we introduce the following sequence
spaces:

QSI(F,p) ={z = (wi;) €aw: {fij (|T(wij) — L))’ > ¢} € I, for some L€ C},

2S3(F,p) = {z = (mij) €2 w : {fij (IT(wi;)|)P7 > €} € I},

2SL(Fop) ={z = (zi;) €2w: I K >0: {fij |T(xy))P" > K} €1},

2500 (F,p) = {37 = (zij) €2 w: {S%pfij (1T (zij))P < 00}} -

We also denote by
2IG(F, p) =2 S5 (F,p) N2 S (F.p)
and
MG, (F,p) =2 SL(F,p) N2 S§(F,p)
We now examine some topological properties and establish some inclusion
relations on these new spaces.
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Theorem 3.1. For any sequence of modulus functions F' = (fi;) and let
X denote any of the spaces 2SE(F, p), 251 (F,p), ng(F, p) and Qiquo (F,p),
then X is a linear space.

Proof. We prove the assertion only for 287(F,p), the others can be proved
similarly. Let z = (2;),y = (yi;) €2 ST(F,p) and let a, 8 be scalars. Then
there exists positive numbers € > 0 such that

2) {(i,j) eNxN: F(|T(zi) — L1|)"" > % for some Ly € (C} el
and
(3) “LﬁeNxN:F@Hmﬂ—Lﬂwfzg,brmmeLgeC}eL
Since F = (f;;) is a modulus function, then from (1) we have,
F(|T(axij + Byij) — (aLy + BL2)[)? = F (|T(awij — L) + (Byij — BL2) )"
< D (Mo)" F(|T(2ij — L)|)? + D (Mp)™ F (T (yij — L2)|)"

where M, and Mg are positive integers such that |a] < M, and |8| < Mp.
From the above inequality, we get

{(i,7) € Nx N: F(|T(axij + Byij) — (aL1 + BL2)[)" > €}

c {(i,j) €Nx N: F(|T(az; — o))" > W}

U {(Z}j) € NxN: F(|T(By;; — BL2) )" = S TITAL (;MB)H } .
By using (2) and (3) the set
{(,j) e NXN: F (|T(axij + Byij) — (aL1 + BL2))P > e} € 1.
This completes the proof. 1

Theorem 3.2. A sequence © = (x;;) € ML(F,p) is I-convergent if and
only if for every e > 0 there exists N, M, € N such that

{(i,5) e Nx N: fij (IT(xij) — T(xn,m) )P < e} € 29MG(F,p).
Proof. Suppose that L = I — limz. Then we have
A = {(z’,j) e NxN: fi; (|T(zi;) — L) < %} e ML(F,p) for all € > 0.
Next fix N¢, M, € A, then we have
fis T (2i5) = T(@ne m)DP < fij (1T (2ig) — LIP + fi5 (T (wn ) — L)
<5+3
=

for all 4,5 € A.
Hence {(i,5) € N x N: fi; (|T(zi;) — T(zn.m.)|)79 < €} € oML(F,p).
Conversely suppose that

{(,5) € Nx N: fi; (|T(2i) = Ty, 21))P7 < €} € 2MG(F,p),
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that is {(4,7) € N x N: (|T(2;) — T(zn. a)|)P? < €} € 2ML(F,p) for all
€ > 0. Then the set

B. = {(i,j) € Nx N: T(y;) € [T(an,m,) — €. T(xn. ) + €]} €2 MG(F, p).
for all e > 0. Let Re = [T(an.m.) —€, T(xn. ) +€). If we fix e >
0, then we have B, € »ML(F,p) as well as B € 2ML(F,p). Hence
Bcn B € oML (F,p) which implies that R = R, N Re # ¢, that is
{(i,j) e Nx N: T(z;;) € R} € oML(F,p) that is diam R < diam Re,
where diam R denotes the length of interval R.

In this way by principal of induction we found the sequence of closed inter-
vals Re = Ip D I O ... D I;; O ... with the property that

diam Iz‘j < %dlam Ii,1j71 for (Z,j = 1, 2,3, .. ) and

{(3,)) e Nx N: T(;5) € Iij} € 2ML(Fp), (i,5=1,2,3,...).

Then there exists a interval £ € [ I;; where (4, j) € N x N such that

& = I —lmT(z) so that F(§) = I — lim F [T(x;5)] therefore L = I —
This completes the proof of the theorem. O

Theorem 3.3. If F' = (fi;) is a sequence of modulus function, then the
inclusion 2S{(F,p) C oST(F,p) C 2SL (F,p) holds.

Proof. The inclusion SE(F,p) C 2S!(F,p) is obvious. Now let
x = (w;;) € 251(F,p), then there exists L € C such that

{(i,j) e Nx N: F(|T(xi;) — L))" > €} € I.
Now ,we have

F(T(i))P7 = F(IT (i) — L + L))"

< D {5 (Tt - 1P+ 3 (2

H
<D {%F (IT(2ij) — L) + max <1, EF (M ) } .

Taking supremum over i,j on both sides, we get x = (z;;) € 251 (F,p).
Hence 2S(F,p) C 2S1(F,p) € 2SL(F,p). O

Theorem 3.4. Let F,G be sequences of modulus functions satisfying Ag-
condition , then

(i) X(G,p) € X(F oG,p).

(i) X(F,p) N X(G,p) € X(F +G,p).
fOTX =9 SI, 256 s gﬁﬁf% and 2932{9.

Proof. Let x = (z;;) €2 S{(G, p), then there exists p > 0 such that
(4) {(0,) e Nx N: G(|T(zi))™ > e} € 1

Let € > 0 and choose 0 < d < 1, such that F(t) < e for 0 <¢ < 4.
Put y;; = G (|T(245)|) and consider

5 lim [F(y;; Pi — li Fy;; Pij li F(y;; Pij
(5) gjn[ (yi5)] yﬁglsg}jeN[ (9i5)] +y1,j>3sffjew[ (9i5)]
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Since F' is a sequence of modulus functions so we have F(Ax) < AF(z),
0<A<l.

Therefore we have

6 li F(y]P = [F(2)7 li )P

(6) poaim, F Gl = [FQIT +  lim, ()]

For y;; > 6, we have y;; < y# <1+ y% Now since F' is non-decreasing it
follows that,

y i) o1 Ly (2
(7) F(yzj)<F(1+ 6><2F(2)+2F( )
Again, since F satisfies As-condition, we have

o L v 1 2435
8) Fly;) < 2K( : )F(2)+ 2KF( :
1 (v 1 (i
©) 2K (%) PO+ () FO)
s

(10) =K (%) F(2).
Hence, we have
11 lim  [F(y;)P < 1, (k67 F2)Y i Ny
(11) yi]_;).g}jeN[ (vij] _maX{ , (k671 (2)) }yij;)g}jeN[(yU]

Therefore from (4), (5) and (11) it follows that
(12) {(ij) : {(i,5) e Nx N: F(G (|T(wi5)])") > €} € I}.

Hence X(G,p) C X(F o G,p).
(ii) Let x = (z45) € 2SE(F,p)N 2S{(G, p). Let € > 0 be given, then we have

{(zi5) : {(i,)) e N N: F(|T(25))"” = €} € I}
and

{(zi5) : {(i,J) e NxN: G(|T(2y5))" = e} € I}.
Therefore, the inclusions
{(i,7) e NxN: (F+G) (|T(zi5) )" = €}
C[{(6,4) e NxN: F(|T(xij)[)" > e} U{(4, ) € Nx N: G (|T (i) )"V > e} € 1
implies that

{(i,J) ENxN: (F+G)(|T(xi)|)"" > e} € 1.

Thus z = (2;;) € 2SH(F + G, p).
For X = 2S!(F,p), 2S§(F,p) , 20§ (F,p) and 994 (F, p) the inclusion is
similar. O

Corollary 3.5. (X,p) C X(F,p) for X = 281, 2S¢, gsmgo and gimls.

Theorem 3.6. For any sequence of modulus functions F' = (fij) the spaces
gSé(F,p) and giméo(F,p) are solid and monotone.
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Proof. We shall prove the theorem for 5 S{(F,p). Let = (zi;) €2 S§(F,p)
then there exists € > 0 such that
(13) {(@,5) e NxN: F(|T(2;5)])" > e} € L.
Let (i;) be a sequence of scalars with |a;;| < 1 for all (4, 7) € N x N, then
the result follows from (13) and the following inequality

F(IT (i) )P < | F (T (i) )™ < F (1T (i) |)P

for all (7,7) e N x N.
The space is monotone follows from Lemma 2.1 ([l

Theorem 3.7. The spaces 2ST(F,p) and o2DML(F,p) are neither solid nor
monotone in general.

Proof. The proof of this theorem follows from the following example. Let
I =1y F(z) = 2% p = (py) = 1 for all z = (z;) € [0,00) and T be
an identity operator on . Consider the K-step space of X (F') of X(F)
defined as follows:
Let x = (x45) € X(F) and y = (y45) € Xk (F) be such that
) T, ’i+j is even

Yii = 0, otherwise.
Consider the sequence (z;;) defined by (z;;) = 1 for all (4,5) € N x N.
Then (z;; €2 ST(F,p), but its K-step space pre image does not belong to
951 (F,p). Thus 257 (F,p) is not monotone and hence not solid by Lemma
2.1. (I
Theorem 3.8. The spaces oS (F,p) and 2S{(F,p) are sequence algebras.

Proof. We prove the result for 95} (F,p). For the space oS! (F,p) the result
can be proved similarly.
Let = (7;;) and y = (yi;) be in 2S¢ (F,p) then, we have
{(i,4) e Nx N: F(|T(xij)|)" > e} €1,
and
{(i,)) e Nx N: F(|T(y;5) )" = e} € I
Therefore,
{(1,j) e Nx N: F (|T(i;)T (y;;)|)""" > €} € 1.

Thus (7 - ;) € 25 (F,p).
Hence 2S{(F, p) is a sequence algebra. O
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