$C-\alpha-(\mathcal{I})$ -COMPACT SPACES

MONIKA GAUR AND M.K.GUPTA

ABSTRACT. Viglino introduced the family of C-compact spaces. The concept of compactness modulo an ideal was introduced by Newcomb. Gupta and Noiri investigated the concept of C-compactness modulo an ideal. Agrawal generalized C-compact spaces by using α -open set and named them as C- α -compact spaces. In the present paper, we study the concept of C- α -compactness modulo an ideal which generalizes C- α -compactness and C-compactness modulo an ideal and term it as C- α -(\mathcal{I})-compact space. We also characterize some of its fundamental properties

2010 Mathematics Subject Classification. 54D30, 54C10.

Keywords and Phrases. Ideal, α -open set, C-compact spaces, C(\mathcal{I})-compact spaces, C- α -compact spaces.

1. Introduction

An ideal \mathcal{I} on a set X is a nonempty subset of P(X), the power set of X, which is closed for subsets and finite unions. A topological space (X, τ) with an ideal \mathcal{I} on X is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau)$ (called the adherence of A modulo an ideal \mathcal{I}) or $A^*(\mathcal{I})$ or just A^* is the set $\{x \in X : A \cap U \notin \mathcal{I} \text{ for } A^* \in X : A \cap U \notin \mathcal{I} \}$ every neighborhood U of x\}. $A^*(\mathcal{I}, \tau)$ has been called the local function of A with respect to \mathcal{I} in [5]. The operator cl*: $P(X) \to P(X)$ defined by $\text{cl}^*(A) = A \cup A^*$ is a Kuratowski closure operator on X and hence generates a topology $\tau^*(\mathcal{I})$ or just τ^* on X finer than τ . In 2006, Gupta and Noiri [4] generalized the concepts of C-compactness of Viglino [11] and compactness modulo an ideal due to Newcomb [8] and Rancin [10] and defined $C(\mathcal{I})$ -compact spaces. A topological space (X, τ) with an ideal \mathcal{I} on X is said to be $C(\mathcal{I})$ -compact if for every closed set A and every τ -open cover \mathcal{U} of A, there is a finite subcollection $\{U_1, U_2, U_3, \dots, U_n\}$ of \mathcal{U} such that $A - \bigcup_{i=1}^{n} \operatorname{cl}(U_i) \in \mathcal{I}$. In [1], Agrawal described C- α -compact spaces. A topological space X is said to be C- α -compact if for each closed subset A of X and for each α -open cover \mathcal{U} of A, there is a finite sub collection $\{U_1, U_2, ..., U_n\}$ of \mathcal{U} such that $A \subset \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_i).$

In the present paper we introduce and explore $C-\alpha-(\mathcal{I})$ -compact spaces, by generalizing simultaneously the concepts of $C(\mathcal{I})$ -compact spaces and $C-\alpha$ -compact spaces.

2. Preliminaries

In this section, we recall some definitions and results which we have used in this paper.

Definition 2.1. A space (X, τ) is said to be C-compact [11] if for each closed subset A of X and for each τ -open covering \mathcal{U} of A, there exists a finite subfamily $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that $A \subset \bigcup_{i=1}^n \operatorname{cl}(U_i)$.

Definition 2.2. A subset A of a topological space X is called α -open set [9] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$. The complement of an α -open set is called an α -closed set.

Definition 2.3. A set U in a topological space X is called an α -neighborhood [1] of a point x if U contains an α -open set V containing x.

Definition 2.4. X is said to be an α -Hausdorff space [1] if for any pair of distinct points x and y in X, there exists α -open sets U and V in X such that $x \in U, y \in V$ and $U \cap V = \phi$.

Definition 2.5. The intersection of all α -closed sets containing a subset $A \subset X$ is called the α -closure [2] of A and is denoted by $\operatorname{cl}_{\alpha}(A)$. A subset A is called α -regular open [3] if $\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(A)) = A$.

Definition 2.6. A topological space X is said to be α -regular [3] if for every closed set F and a point $x \notin F$, there exists disjoint α -open sets A and B such that $x \in A$ and $F \subset B$.

Definition 2.7. A map $f: X \to Y$ is said to be α -continuous [7] if the inverse image of every open subset of Y is α -open set in X.

Remark 1. Continuity implies α -continuity but not conversely.

Remark 2. Every open mapping (closed mapping) is α -open mapping (α -closed mapping) but the converse is not true.

Definition 2.8. A map $f: X \to Y$ is said to be α -irresolute [6] if the inverse image of every α -open subset of Y is α -open set in X.

Definition 2.9. Let X be a topological space and A be a subset of X. An element $x \in X$ is called α -adherent point [1] of A if every α -open set G containing x contains a point of A, that is $G \cap A \neq \phi$. Also a point x is said to be an α -adherent point of filter base \mathcal{B} if for each α -neighborhood U of x and for each $B \in \mathcal{B}$, $U \cap B \neq \phi$. Clearly $\bigcap \{\operatorname{cl}_{\alpha}(B) : B \in \mathcal{B}\}$ is the α -adherent set of filter base \mathcal{B} .

Lemma 2.10. For each α -open set U of a topological space X, we have $\operatorname{cl}_{\alpha}(\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U))) = \operatorname{cl}_{\alpha}(U)$.

Proof: This is easy to be established.

3. $C-\alpha-(\mathcal{I})$ -COMPACT SPACES

Definition 3.1. A topological space X is said to be $C-\alpha-(\mathcal{I})$ -compact if for each closed subset A of X and for each α -open cover \mathcal{U} of A, there exists a finite sub collection $\{U_1, U_2, ..., U_n\}$ of \mathcal{U} such that $A - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_i) \in \mathcal{I}$.

Theorem 3.2. A topological space X is $C-\alpha-(\mathcal{I})$ -compact if and only if for each closed subset A of X and for each α -regular open cover $\{U_{\lambda}: \lambda \in \Lambda\}$ of A, there exists a finite subcollection $\{U_{\lambda_i}: i=1,2,...,n\}$ such that $A-\bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_{\lambda_i}) \in \mathcal{I}$. **Proof:** First, we assume that X is $C-\alpha-(\mathcal{I})$ -compact space. Let A be any closed subset of X and $\mathcal{U} = \{U_{\lambda}: \lambda \in \Lambda\}$ any α -regular open cover of A. Since every

 α -regular open set is α -open. Therefore \mathcal{U} is an α - open cover of A. By hypothesis, $A - \bigcup_{i=1}^{n} \operatorname{cl}_{\alpha}(U_{\lambda_i}) \in \mathcal{I}$.

Conversely, let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an α -open cover of A. Then $\mathcal{U} = \{\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U_{\lambda}))\}$ becomes an α -regular open cover of A. By assumption, there exists a finite subcollection $\{\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U_{\lambda_{i}})) : i = 1, 2, ..., n\}$ of \mathcal{U} such that $A - \bigcup_{i=1}^{n} \operatorname{cl}_{\alpha}(\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U_{\lambda_{i}}))) \in \mathcal{I}$. Since U_{λ} is α -open, therefore for each i, we have $\operatorname{cl}_{\alpha}(\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U_{\lambda_{i}}))) = \operatorname{cl}_{\alpha}(U_{\lambda_{i}})$. Hence $A - \bigcup_{i=1}^{n} \operatorname{cl}_{\alpha}(U_{\lambda_{i}}) \in \mathcal{I}$ implying that X is C- α - (\mathcal{I}) -compact.

Theorem 3.4. For a topological space X, the following are equivalent:

- (a) X is $C-\alpha-(\mathcal{I})$ -compact;
- (b) For each closed subset A of X and for each family \mathcal{F} of α -closed subset of X with $\cap \{F \cap A : F \in \mathcal{F}\} = \phi$ there exists a finite subfamily $\{F_1, F_2, F_3, ..., F_n\}$ such that $\bigcap_{i=1}^n (\operatorname{int}_{\alpha}(F_i)) \cap A \in \mathcal{I}$;
- (c) If A is a closed subset of X and B is an α -open filter base on X such that $\{B \cap A : B \in \mathcal{B}\} \subset P(X) \mathcal{I}$, then $\cap \{\operatorname{cl}_{\alpha}(B) : B \in \mathcal{B}\} \cap A \neq \emptyset$.

Proof: (a) \Rightarrow (b) Let A be a closed subset of a C- α -(\mathcal{I})-compact space X and \mathcal{F} be a family of α -closed subset of X with $\cap \{F \cap A : F \in \mathcal{F}\} = \phi$. This implies $\cap \{F : F \in \mathcal{F}\} \subset X - A \Rightarrow A \subset X - \cap \{F : F \in \mathcal{F}\} = \cup \{X - F : F \in \mathcal{F}\}$. Hence $\{X - F : F \in \mathcal{F}\}$ is an α -open cover of A and so by C- α -(\mathcal{I})-compactness of X, there exists a finite subfamily $\{X - F_i : i = 1, 2, ..., n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(X - F_i) \in \mathcal{I}$. This set in \mathcal{I} is easily seen to be $\bigcap_{i=1}^n (\operatorname{int}_{\alpha}(F_i)) \cap A$. (b) \Rightarrow (c) Suppose A is a closed set and \mathcal{B} is an α -open filter base on X such that

 $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$. Suppose if possible, $\cap \{\operatorname{cl}_{\alpha}(B) : B \in \mathcal{B}\} \cap A = \phi$. Then $\{\operatorname{cl}_{\alpha}(B) : B \in \mathcal{B}\}$ is a family of α -closed sets such that $\cap \{(\operatorname{cl}_{\alpha}B) : B \in \mathcal{B}\} \cap A = \phi \Rightarrow \cap \{(\operatorname{cl}_{\alpha}B) \cap A : B \in \mathcal{B}\} = \phi$, so by (b) there is a finite subfamily, say $\{F_i = \operatorname{cl}_{\alpha}B_i : i = 1, 2, ..., n\}$ of \mathcal{F} with $\bigcap_{i=1}^n (\operatorname{int}_{\alpha}(F_i)) \cap A \in \mathcal{I}$. However, this set is $\bigcap_{i=1}^n (\operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(B_i))) \cap A$ and $(\bigcap_{i=1}^n B_i) \cap A$ is a subset of it. Therefore, $(\bigcap_{i=1}^n B_i) \cap A \in \mathcal{I}$. Since \mathcal{B} is a filter base, we have a $B \in \mathcal{B}$ such that $B \subset \bigcap_{i=1}^n B_i$. But then $B \cap A \in \mathcal{I}$, which contradicts the fact that $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$. (c) \Rightarrow (a) Assume that X is not $C \cdot \alpha \cdot (\mathcal{I})$ -compact. Then there exist a closed subset A of X and an α -open cover \mathcal{U} of A such that for any finite subcollection $\{U_1, U_2, ..., U_n\}$ of \mathcal{U} , $A - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_i) \notin \mathcal{I}$. We may assume that \mathcal{U} is closed under finite unions. Then the family $\mathcal{B} = \{X - \operatorname{cl}_{\alpha}U : U \in \mathcal{U}\}$ is an α -open filter base on X such that $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$. So by the hypothesis, $\cap \{\operatorname{cl}_{\alpha}(X - \operatorname{cl}_{\alpha}(U)) : U \in \mathcal{U}\} \cap A \neq \phi$. Let x be a point in the intersection. Then $x \in A$ and $x \in \operatorname{cl}_{\alpha}(X - \operatorname{cl}_{\alpha}(U)) = X - \operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(U)) \subset X - U$ for each U in \mathcal{U} . This implies $x \notin U$ for any $U \in \mathcal{U}$. But this contradicts the fact that \mathcal{U} is a cover of A. Hence X is $\operatorname{C-}{\alpha} \cdot (\mathcal{I})$ -compact.

Definition 3.5. A filter base \mathcal{B} is said to be α - (\mathcal{I}) adherent convergent if for every neighborhood G of the α -adherent set of \mathcal{B} , there exists an element $B \in \mathcal{B}$ such that $(X - G) \cap B \in \mathcal{I}$.

Theorem 3.6. A topological space X is C- α - (\mathcal{I}) -compact if and only if every α -open filter base on P(X)- \mathcal{I} is α - (\mathcal{I}) adherent convergent.

Proof: Let X be $C-\alpha-(\mathcal{I})$ -compact and \mathcal{B} an α -open filter base on $P(X)-\mathcal{I}$ with A as its α -adherent set. Let G be an open neighborhood of A. Since A is the α -adherent set of \mathcal{B} , we have $A = \cap \{\operatorname{cl}_{\alpha}B : B \in \mathcal{B}\}$. Since G is an open neighborhood of A, we have $A \subset G$ and X - G is closed subset of X. Now $\{X - \operatorname{cl}_{\alpha}(B) : B \in \mathcal{B}\}$ is an α -open cover of X - G and so by the hypothesis, it admits a finite subfamily $\{X - \operatorname{cl}_{\alpha}(B_i) : i = 1, 2, ..., n\}$ such that $(X - G) - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(X - \operatorname{cl}_{\alpha}(B_i)) \in \mathcal{I} \Rightarrow (X - G) \cap (\bigcap_{i=1}^n \operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(B_i))) \in \mathcal{I}$. However, $B_i \subset \operatorname{int}_{\alpha}(\operatorname{cl}_{\alpha}(B_i))$ implies $(X - G) \cap (\bigcap_{i=1}^n B_i) \in \mathcal{I}$. Since \mathcal{B} is a filter base and $B_i \in \mathcal{B}$, there is a $B \in \mathcal{B}$ such that $B \subset \bigcap_{i=1}^n B_i$. But then $(X - G) \cap B \in \mathcal{I}$ as required.

Conversely, let X be not $C-\alpha-(\mathcal{I})$ -compact, A any closed set and \mathcal{U} an α -open cover of A such that for no finite subfamily $\{U_1,U_2,U_3,...,U_n\}$ of $\mathcal{U}, A-\bigcup_{i=1}^n\operatorname{cl}_\alpha(U_i)\in\mathcal{I}$. Without loss of generality, we may assume that \mathcal{U} is closed for finite unions. Therefore, $\mathcal{B}=\{X-\operatorname{cl}_\alpha(U):U\in\mathcal{U}\}$ becomes an α -open filter base on $P(X)-\mathcal{I}$. If x is an α -adherent point of \mathcal{B} , that is, if $x\in \cap\{\operatorname{cl}_\alpha(X-\operatorname{cl}_\alpha(U)):U\in\mathcal{U}\}=X-\cup\{\operatorname{int}_\alpha(\operatorname{cl}_\alpha(U)):U\in\mathcal{U}\}$, then $x\notin A$, because \mathcal{U} is an open cover of A and for $U\in\mathcal{U},\ U\subset\operatorname{int}_\alpha(\operatorname{cl}_\alpha(U))$. Therefore the α -adherent set of \mathcal{B} is contained in X-A, which is an open set. By the hypothesis, there exists an element $B\in\mathcal{B}$ such that $(X-(X-A))\cap B\in\mathcal{I}$, that is, $A\cap B\in\mathcal{I}$, that is, $A\cap (X-\operatorname{cl}_\alpha(U))\in\mathcal{I}$, that is $A-\operatorname{cl}_\alpha(U)\in\mathcal{I}$, for some $U\in\mathcal{U}$. This contradicts our assumption.

Definition 3.7. A function $f:(X, \tau)\to (Y, \varsigma)$ is said to be θ - α -continuous at a point $x\in X$ if for every α -open set V of Y containing f(x), there exists an α -open set U of X containing x such that $f(\operatorname{cl}_{\alpha}(U))\subseteq\operatorname{cl}_{\alpha}(V)$.

Theorem 3.8. Let $f:(X, \tau, \mathcal{I}) \rightarrow (Y, \varsigma, \mathcal{J})$ be a θ - α -continuous function, (X, τ, \mathcal{I}) C- α - (\mathcal{I}) -compact, (Y, ς) α -Hausdorff, and $f(\mathcal{I}) \subseteq \mathcal{J}$. Then f(A) is $\varsigma^*(\mathcal{J})$ -closed for each closed set A of X.

Proof: Let A be any closed set in X and $a \notin f(A)$. For each $x \in A$, there exists a ς - α -open set V_y containing y = f(x) such that $a \notin \operatorname{cl}_{\alpha}(V_y)$. Now because f is θ - α -continuous, there exists an α -open set U_x containing x such that $f(\operatorname{cl}_{\alpha}(U_x)) \subseteq \operatorname{cl}_{\alpha}(V_y)$. Now the family $\{U_x : x \in A\}$ is an α -open cover of A. Since X is $\operatorname{C-}\alpha$ - (\mathcal{I}) -compact, therefore there exists a finite subfamily $\{U_{x_i} : i = 1, 2, ..., n\}$ such that $A - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_{x_i}) \in \mathcal{I}$. But then $f(A - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_{\lambda_i})) \in f(\mathcal{I}) \subseteq \mathcal{J}$, that is, $f(A) - f(\bigcup_{i=1}^n \operatorname{cl}_{\alpha}(U_{\lambda_i})) \in f(\mathcal{I}) \subseteq \mathcal{J}$ because $f(\mathcal{I})$ is also an ideal. Hence, $f(A) - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(V_y) \in f(\mathcal{I}) \subseteq \mathcal{J}$. Now $a \notin \operatorname{cl}_{\alpha}(V_y)$ for any i implies that $a \in Y - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(V_{y_i})$ which is open in (Y, ς) . That is $Y - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(V_{y_i})$ is an α -neighborhood of a in (Y, ς) . $(Y - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(V_{y_i})) \cap f(A) = f(A) - \bigcup_{i=1}^n \operatorname{cl}_{\alpha}(V_{y_i}) \in f(\mathcal{I}) \subseteq \mathcal{J}$. Hence, $a \notin (f(A))^* (\varsigma, \mathcal{J})$. Thus $(f(A))^*(\varsigma, \mathcal{J}) \subset f(A)$. This implies f(A) is $\varsigma^*(\mathcal{J})$ -closed.

REFERENCES

- [1] M. Agrawal, C- α -compact spaces, Note Mat. 30(1) (2010), 87-92.
- [2] M. Caldas, D. N. Georgiou and S. Jafari, Characterizations of low separation axioms via α-open sets and α-closure operator, Bol. Soc. Parana. Mat. 21 (2003), 1-14.
- [3] R. Devi, K. Balachandran and H. Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure Appl. Math. 29(1) (1998), 37-49.
- [4] M. K. Gupta and T. Noiri, C-compactness modulo an ideal, Int. J. Math. Math. Sci. (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135.

- [5] K. Kuratowski, Topology. Vol. I, Academic Press, New York, 1966.
- [6] S. N. Maheshwari and S. S. Thakur, On α -irresolute mappings, Tamkang J. Math. 11(2) (1980),, 209-214.
- [7] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. 41(3-4) (1983), 213-218.
- [8] R.L. Newcomb, *Topologies which are compact modulo an ideal*, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [9] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(3) (1965), 961-970.
- [10] D. V. Ranin, Compactness modulo an ideal, Soviet Mathematics. Doklady, 13 (1972), 193-197.
- [11] G. Viglino, C-compact spaces, Duke Math. J. 36(4) (1969), 761-764.

Department of Mathematics, Ch. Charan Singh University, Meerut(U.P.)-250004, India.

 $E\text{-}mail\ address: \verb|monikagaur.ccsu@gmail.com||$

Department of Mathematics, Ch. Charan Singh University, Meerut(U.P.)-250004, India.

 $E ext{-}mail\ address: mkgupta2002@hotmail.com}$