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NON-POLYNOMIAL QUARTIC SPLINE METHOD FOR
SOLVING TWELFTH ORDER BOUNDARY VALUE
PROBLEMS

ARSHAD KHAN AND SHAHNA

ABSTRACT. In this paper, a non-polynomial quartic spline method is
presented to obtain the approximate solution of twelfth-order boundary
value problems with two point boundary conditions. For the employ-
ment of the method, the given problem is decomposed into a system
of sixth order boundary value problems. Convergence analysis of the
method for second and fourth order has been discussed. Numerical
examples are given to demonstrate the accuracy and efficiency of the
developed method. Also, the results obtained by this method have been
compared with the other existing methods.
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1. INTRODUCTION

We consider the following twelfth-order boundary value problem of the

form

(1) y" (@) + f(2)y(x) = glx), a <z <b
subject to the boundary conditions

(2) Yy (a) = Ag,y®* () = By, 0< k<5

where Agy, and Bog(k = 0,1,...,5) are finite real constants. The functions
f(z) and g(z) are continuous on the interval [a, b].

The boundary value problems (BVPs) of higher order have been arised
due to their mathematical importance and applications in various problems
of applied sciences. Chandrasekhar [12] showed that this type of boundary-
value problem arises in a way when a uniform magnetic field is applied across
the fluid in the same direction as gravity, instability will occur. When insta-
bility sets in as over stability, it is modeled by twelfth-order boundary-value
problems. Such problems arise mostly in geophysics when studying core
fluid adjacent to the core-mantle boundary. Conditions for existence and
uniqueness of solutions of the twelfth-order boundary-value problems was
discussed in Agarwal[10]. There are many authors who developed the meth-
ods to determine the approximate solutions of twelfth-order boundary-value
problems. For example, Boutayeb and Twizell [1], Siddique and Akram
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[14], Siddique and Twizell [13], Twizell et al.[5] and Wazwaz[3] were devel-
oped the methods to solve twelfth-order BVPs. In Kumar and Srivastaval§],
cubic, quintic and sextic splines were presented to solve differential equa-
tions. However, most of these methods were based on higher degree splines
to solve twelfth-order boundary value problems. In this paper, we use a
non-polynomial quartic spline to solve twelfth order BVPs. The presented
method based on the decomposition of twelfth order into a system of sixth
order boundary value problem as follows:

(3) yO(z) = ulz)
(4) u® (@) + f@y(x) = g(x), a<z<b

subject to modified boundary conditions;

y(2k) (a) = A2k1 y(2k)(b) = BZka
(5) u®(a) = Cop,u®(b) = Doy, 0 < k<2

There are various methods in literature to solve the sixth order boundary
value problems. For example, a non-polynomial spline approach by Islam et
al.[15], cubic spline finite difference scheme by Jha et al.[9], spline colloca-
tion method by Rashidinia et al.[7], parametric quintic spline by Khan and
Sultana[2] and variational iteration by Ji-Huan[6] were developed to deter-
mine approximate solution of sixth order BVPs.

After implementation of the problem over the method, we get a system
of septa-block-diagonal matrix which is solved by using LU decomposition
method. The paper describing a non-polynomial quartic spline method is
organized into six sections. Section 2 gives a brief derivation of the scheme
and the truncation error. In section 3, boundary conditions have been de-
veloped for second and fourth order method. Application of the method for
solving twelfth order BVPs is discussed in section 4. Convergence analysis
of the method is discussed in section 5 and in section 6, numerical examples
and comparison with the existing methods are given.

2. DERIVATION OF THE SCHEME

Let a = xg < 1 < 19 < < x, = b, in order to develop the numerical
method for approximating the solution of given problem, we first divide the
interval [a,b] into n equal parts by introducing

xi=a+th, i=0,1,...,nand h=(b—a)/n
Let
(6) Pi(z) = a;sink(x — z;) + bek@=2i) 4 ci(z — a:i)2 +di(z—z;) + e

be a non-polynomial quartic spline P; is defined on [a, b] of class C®[a, b]
which interpolates at the mesh points x; depends on a parameter k and
reduces to an ordinary quartic spline in [a,b] as &k — 0 and k& > 0. To
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determine the coefficients a;, b;, c;, d; and e;, we define the following inter-
polatory conditions as

(7) Pi(z;) = wi, Pi(zip1) = yit1
(8) PP = D, PP(zi41) = Diny
1 .
(9) ‘Pi(4)(zi) = 5(5}-—1—5114_1), 1=0,1,...,n

By using (7), (8) and (9) we calculated the coefficients as

h*(Di = Dit1) | hA(Si+ Sita) (e — 1)

a; =

#2sind 20%4sin 6
b = h4(Sz- + Sit1)
204

— h%D; ~ (Si + Siy1)

' 2 402
g - Y#1—Yi  N(Di— Di1) — D;§°

! h 92

13(S;(67 — 4(” — 1)) + Sip1 (67 — 4(e” — 1))
+
494
e = Yi—b
where, 0 = kh

Using the continuity of first and third derivatives, P, (z;) = P/ (z;),m =
1, 3 the following consistency relations are derived as

10
5411)Di—1+A12Di+A13Di+1 = A1 (Yir1—2yi+yi—1)+A15Si_1+A16Si+A175i1
and
(11) BuDi-1 + Bi2D; + Bi3Diy1 = B1aSi—1 + B155; + Bi6Si+1

where,

Al = 20cosf+ (0> —2)sing

Al = —20cosf—20+ (4+ 6% sind
A13 = 20 —2sind
262

A = h2sinf

h2((6% + 4€’ — 20’ — 4) sin 6 + 20(1 — €7) cos )
A5 =

262

h2(20(0 — ¥ + 1) sin @ + 20(1 — €”) cos 0 + 20e? — 26)

A = 202

h?(20€’ — 26 + (4 4 260 + 6% — 4e) sin §)
262
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Bii = —cosf
Bis = 1+4cosf
Bz = -1
h2(—e’sinf + (e — 1) cos )
By = 5
20
B — h%(sin§ — cos @ + 1)(1 — €%)
15 - 292
h?(sing — (e — 1))
Big = 202
Using (10) and (11), we obtain the following relation in terms of y; and D;
(12)
Vi-2toyi1+Byitoyir1+yive = h* (02Si—a+B82Si_ 141 Si+P1Sit1+1 Sita),
where,
o —3 —cosf
B = 4+ 2cosf
5 cos 6
20+ 1+ 56? —sin6 — ¢’
o1 =
264
5 = e?(sin® + cos @) — cos — 20e? cosf  €’(cosf + sinh)
b 207 462
02¢’ +1+20 4 (¢? — 0% — 1)sinf + €’ cos§ — 62 — ¢’ — 20¢% cos 0
Y= 1 +
20
e?(sin @ — cos 0)
462
1+ (1—20)e? + (1 +e? +6%%) sinh + (—1 — 20 + € + 26¢?) cos 6
ay = +
204
26% —sinf + (1 — 2¢%) cos 0 + ¢’
462
P (14260 —e%) cos® — 2 +20e? +1 — e?sinf — sinf + e — % sin 6 — 6% + 927
2 =

204
cos @ + sinf — e’
462
Remark: Our method reduces to Al-Said and Noor[4] based on quartic
spline when

1
(alaﬁ].)rylaﬂanQ) - @(1,12,22, 1271)

For making the system consistent with the given boundary conditions, we
use finite difference formula of O(h%)

(13)

—Si 94168 1 —308;+16S; 11 — Siya = 12079\ + O(hS), i = 2,3,..,n—2
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Using (12)and(13), we obtained the following relation
(14)
Vi-2 +oyi1 + Byi + ayiv1 +Yiva

C118i-2+C128-1+C135+C14Si41 = % 1=2,3,...,n=2
where,
Cni = mm—m
Ciz = f2+16m
Ciz = m—300q
Ciu = pi+16m
From Lucas[16] for quartic spline, it can be written as
(15) S -285+84 = K9 100md), i=1,2...,n-1
By using (14) and (15), we obtained the following relation as
Dnyﬁ)g + D12yl@1 + D13y§6) + D14y§i)1 = FEuyi-3 + Eiyi—2 + Ei3yi—1 + Euy; +
(16) Ersyiv1 + EreYive + Yivs, 0 =3,4,..,n—3
where,

Dy = hS(ay — o)
Dy = hS(4ay + B)
D3 = h%(—6a1+m)
Diy = hS(day + 1)
Enn = vEpe=a-2
Eis = v—2a+ ;B4 =2a—28
Eis = 20+p+1Eg=0—-2
Truncation error. The local truncation error t;,i = 3,4,...,n — 3 asso-

ciated with presented method is obtained by expanding (16) using Taylor
series

hA(18 + 28 + 283 + 82
b= (<24 20)g+ W23+ 20 + B+ 57y + 1 a4' P87 @
h°(81 — 81 474 + 1240 + 28 + 730
(T’ﬂy§5) + h6< a6, 5 T Br+pPa+on+ar+ ’V1)> .%(6) +

6238 + 508cr + 28 +
8! B

hT (=201 + 200 + B2 — B )yt + h8<

4o + 4dag + B + B2
2!

410 <59454 + 20440+ 28+ 590507 4o + daz + By + B ) (9

10! 4! v

>y§8) +h%(~8ay + 16az + 2 — By +

+

515058 + 8188cx + 23 + 531442~
12! -

WM (=32a1 + 3209 + B2 — By + hl?(

56a1 + 64ag + 31 + B2
6!
(17)

)y§12) +O3),i=3,4...,n—3
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For different values of parameters, we get method of different orders.

3. DEVELOPMENT OF BOUNDARY CONDITIONS

The recurrence relation (16) gives (n-5) linear equations in (n-1) unknowns
Yi,t = 1,2,...,n — 1. We need four more equations, two at each end of the
range of integration. These four equations are defined as

4 5
> Gkyk + arhPyg + bkt + nb Zwky,(f) +t; = 0;i=1
k=0 k=0

5 6
> gk + ash®yg + bohtyS + hS > Mt by = 0 =2

k=0 k=1
n n—1

S i+ ah?yl+ by + 1 ST Ny Aty = 0 i=n -2

k=n—5 k=n—6

n
3 ikt kb 1Y gt = 0=
k=n—4 k=n—5

where 0;'s, nr's, a1,b1,a2,b2, A\;'s and wy's are arbitrary parameters to be
determined at ¢ = 1,2,n — 2,n — 1 by using Taylor series expansion. The
values of these parameters for second order method is

- 5
(607617027537547(111()1) = (577145 14a767117276)
( ) = (22 1.0,0,0,0)
Wo, W1, W2, W3, W4, W5) = 180°
1
(77077717772777377747n57a21bZ) = (_4a 145_201 157_6a1alaﬁ)
1 361
A1, A2, Az, A, As, A = (—,—7—,0,0,0,0
( 1, A2y A3y A4y A5, 6) (180’ 3607 7 )
(7]7’L—57 Mnm—4,"M—-3,Mn—25"Mn—1, Nn, @2, b2) = (1a 76, 151 7205 ]-47 747 ]-a E)
361 1
(An767 /\n75: )‘n747 )\n,3, )\n727 )‘nfl) = (07 0,0,0, _%7 @)
- - )
(6n747 671737 671,2, Onfh Onv ai, bl) = (17 _65 141 _147 51 _2a g)
29
(’LUn_5, Wn—4, Wn—3, Wn—-2,Wn—-1, wn) = (07 07 Oa 07 -4 m)

and the local truncation error is

. 9580 18,8 +O(h9) i=1n-1,
' 9966h8 )+ o®h?), i=2n-2.

For <a1 B1,71 = % 4%, E) the local truncation error is

t, = < 48>h8 ® L om),i=3,..n—3
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The values of these parameters for fourth order method is

- 5
(507611027537647a17b1) = (57_141 147 _6117_2)6)
323 1133 101 25
S O A A |
(wo, w1, w2, w3, w4, ws) ( 5040°  2016° 504’ 2016’ )
1
(7)05 N, 12,73, 14, 15, A2, b2) = (74’ 14a 7207 157 763 1, 17 _)

12
729 444 1735 29

(A1, A2, A3, Ay As, Ag) = (—m»—%7—m7m, ,0)

1
(nn75a NMn—4,Mm—-3,"Mn—2,"n—1,1n, 2, b2) = (17 —6,15,-20,14, -4, 1, E)

29 1735 444 729
An—6, An—5, An—4, An—3, An—2, Ap— = 0,0,—/—4—y———, ——, ———
( n—6y \n—>5y \n—4, \n—3, \n—-2, \n 1) ( ) ’86688’ 6991’ 875’ 3013)

. - - 5

(57174’ 5n73a 071727 OTL*L o?’La ai, bl) - (17 _67 147 _145 57 _2a 6)
( ) = (0 25 101 1133 323 )
Wn—5, Wp—4, Wn—3, Wn—2,Wn_1,Wn - s Uy 2016’ 504’ 20167 5040

and the local truncation error is
[yl £ o), =L,
C| M6/ 10,00 L O(R1Y),  i=2,0-2.
For (al, B1,m =1, —%, %) the local truncation error is

1 10, (10) 12y -
t = (m>h y, ' +O(h*),i=3,...,n-3
4. APPLICATION TO TWELFTH ORDER BOUNDARY VALUE PROBLEM

To illustrate the application of the presented method, we consider a
twelfth order linear boundary value problem of the form

(18) y 1 (2) + fa)y(z) = g(x), a <z < b
subject to the boundary conditions;
(19) y®(a) = Ag,y®M(b) =By, 0< k<5

where Agy, and By (k= 0,1,...,5) are finite real constants and the functions
f(z) and g(x) are continuous on [a,b]. We rewrite the given problem into
the system of sixth order boundary value problems as follows:

(20) v (z) = ulx)
(21) u® (@) + f(@)y(x) 9(z), a<az<b
subject to modified boundary conditions;
Y (a) = A,y (b) = Bu,
(22) u®(a) = Cop,u®(b) = Doy, 0 < k < 2.

After applying the scheme (16) to the sixth order boundary value prob-
lems (20) and (21), we get the following schemes:
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Dllyi(?)g + D12y§§)1 + D13y£6) + D14y§i)1 = Enyi—3+ Fayi—2 + E13yi1 + By +

E15yiv1 + EeYive + Yir3, 1 = 3,4,...,n— 3

Dlluz(‘ﬁ)g + D12u§'i)1 + D13ul(~6) + D14UZ(SL)1 = FEnui_3 + Eiouio + Figui_1 + Eigu; +

Ersuit1 + Eretivo + uips, i = 3,4,...,n—3

Finally, we obtain the vector difference equation for boundary value problem
(18-19) as follows:

(23) AY; 3+ BY; o+ CY, 1+ DY;+ EY; 1 + FYi o+ GYi43 = H

which can be written as
ail a2 Yi-s | 4 b1 bio iz | | C.11 C.12 Yi-1 | 4 di1  dia vi | 4
a1 as Ui—3 ba1  ba2 Ui Co1  Co2 Ui—1 da1  dao u;

el e Yit1 fir fi2 Yit2 g11 912 Yies | | ha
+ + =
€21 €22 Ui41 for fo2 Ui4-2 921 G922 Ui43 hio

i=3,4,...n—3
where,
a1 = v, a12=0, a1 =0, ap=7;
bin = a—2,bip=h51 —az),ba = h%(a1 — as)gi—2,bm = a —2;
e = y—2a+B,c12 = h®(—dar — B2),ca1 = ¥ (—da1 — Ba)gi-1, 20 = ¥ — 200+ B
diy = 20 —28,dis = h%(6a1 —1),do1 = hS(6ay — v1)gi, doo = 20 — 23 ;
er1 = 1—2a+B,e12 =h%—4a1 — B1),ea1 = h®(—da1 — B1)git1,e22 =1 — 2a + B
fii = a=2,f12=0,f01=0,fo=a—2;
g1 = 1,912 =0,921 = 0,922 =1

hit = 0,hia = k(a2 — a1) fi—a + (41 + Bo) fi—1 + (=6a1 +v1) fi + (dar + B1) fit
t=3,...,n—3

We require four more equations at i = 1,2,n — 2 and n — 1 which are given
as follows:
Fori=1

5 w1 h® no| 4 5o wah® 2| L 3 wsh® vs |
—wigrh® & Uy —wagah8 02 U —wsgsh® &3 u3

N wyh® Ya | _ | hn
—wygsh® N Uy hi2

where,
hi1 = —doyo — a1h2y(()2) - b1h4y((]4) — wough®
hia = —doug — alhzu((f) - b1h4u§)4) — woyogoh® — h®(wo fo + w1 fi + wafo + ws fs + wafs)
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fori=2
U A1h® vl M2 Aoh® v2 | 4 N3 Azh® s |
“AgihS  m Uy —X2g2h8 o Uz —Asgsh®  ms u3
14 Agh® i |y
—A19ah® My Uy

75 Ash® Ys | _ | h=
—Xs595hS 15 us haso

where,
hor = —noyo — a2h2y(()2) - b2h4y((]4)
hao = —noug — agh?ul’) — bah*ul? — RO (A1 fi + Nafo + s fa + Mafi+ Asfs)

fori=n-—2

M-5  An—sh® Yn—s | | M-t Ap—ah® Yn—a | |
_)\n~597175h6 TIn—5 Un—5 _)\n~4gn74h6 -4 Un—4

Mn—3 )\n—3h6 Yn—3 + Nn—2 )\n—ZhG Yn—2 +
_)\n73gn73h6 Tn—3 Un—3 _)\717291172,7’6 -2 Up—2

Mn—-1 /\n—th Yn—1 — hn—21
“An—19n-1h® M1 Up—1 hn—22

where,
hp_o1 = —MmYn — a2h2y512) - b2h’4y’£l,4)
hnooa = —npun — ash®u® — bah*ul®d — RSNy 5fn 5+ M afua+ Mo 3fn 3

+)\n—2fn—2 + )\n—lfn—l)

fori=n-1
On—4 wn—4h6 Yn—4 + On—3 wn—3h6 Yn—3 +
_wn74gnf4h6 57174 Up—4 _w7173gn73h6 67173 Up—3
On—2 wn—2h6 Yn—2 + On—1 ’wn—lh6 Yn—-1 _ hn—11
—Wp—2gn—2h®  §_s Up_2 —Wpo1gn-1h® 81 Up_1 hn—12

where,

hno11 = —0nYn — a1h2y7(12) — b1h4y£l4) — wpunh®
hn—12 - _(snun - a1h2u7(12) - b1h4u$b4) - wnyngnhﬁ - hG(wn—4fn—4 + wn—3fn—3

+wn72fn72 + wnflfnfl + wnfn)

where the coefficients §;'s,w;'s, n;'s and \;'s are different for second and
fourth order method which are given in section 3.

653
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5. CONVERGENCE ANALYSIS

The developed method leads to the following septa-block-diagonal matrix
of the form

(24) LZ = H

where,

o
Q
!
t

= ®

N Q

(25) L=

C D E F G
B C D E F
Cn—s Cn—4 Cn—3 Cn—Q Cn— 1
Dn—4 anS Dn72 Dn—l h

ey

where, A;'s, B;'s...G;'s are matrices of order 2 x 2 | Z = (21,22, ..., 2n_1]T
where, z; = [y;,u;]T and the right hand side vector H = [hy, hg, ..., hy_1]T
Where, hj, = [hﬂ, hz‘g}T

We also have,

(26) LZ = H+T

where Z = (21, Z2, ..y Zn_1)T where, Z; = [§i, %)T be the exact solution and
T = [t1,to,....,tn_1|T where, t; = [§; — yi, @4 — u;]T be the local truncation
error. From (24) and (26) we have,

L(Z-2Z)=T
~ LE =T,
E=7-7= [61,62, ...,en_ﬂT

Now we calculate sum of each row of the matrix L
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g — 61 + 02 + 03 + 04 + hO(w1 4 w2 + w3 + wy), =1
Y 814 02 + 03 + 04 — hS(w1g1 + wags + w3gs + wags), j=2
Syi = m 42+ 03+ na+ 05+ RO+ X2 + A3+ A+ Xs), =1
! m o+ +n3 +na+ 05 — BO(A1g1 + Aega + A393 + A\ags + Asgs), =2
—2+ 2y — hS(a1 + B1+ 71+ B2 + a2) J=1i=35,...n-4
Sij = §—2+2v+h%((a1 — a2)gi-2 + (—4o1 — Ba)gi1+
(6o — 71)gi + (—4a1 — B1)git1) j=2,i=4,...,n-3
M-5+Mh-4+Mm-3+NMm-2+ -1+ hﬁ()\nff) + /\n74 + )\n73 + /\n72 + >\n71), jzl
Sn—2j = NMn—5 + NMn—4 + Nn—3 + Nn—2 + Np—1 — hG()\n—Bgn—S + >\n—4gn—4 + >\n—3.gn—3+
/\n72gn72 + /\nflgnfl)a J:2
S o 5n—4 + 5n—3 + (5n—2 + 6n—1 + hﬁ(wn_4 + Wnp—3 + Wp—2 + wn—l)a .]:
j = R .
" 51+ 02 + 03 + 04 — hO(Wn_agn—a + Wn_39n—3 + Wn—2gn—2 + Wn_1gn-1), j=2

Let 0 < M € Z7 is the minimum of | g; |. For sufficiently small h, we can
say that

s h6(w1 + wy + w3 + wa), =1
»
’ hO(w + ws + w3 +wa) M, =2
S RS(A\1 + A2 + A3+ Aa + Ns), =1
% hO(A1 + A2+ Az + g+ As) M, j=2
S ho(o1+Br+m+pa+a)  j=1,i=3,5..,n—4
" ho(ar+f1+m+ B+ az)M j=2, i=4,6,...,.n—3
g RS M5+ Aa+ A3+ Ao+ A1), =1
n=2 = hﬁ(/\n 5+ An—da + Anes + Ap—a + A1) M, j=2
S, . h‘G(wn*4 + wp_3 + Wp—9 + wn,1), J:1
n=lj hﬁ(wnle + Wp_3 + wp_2 + wnfl)Mv =2

S > max[hG(wl + wo + w3 + wy), h6(w1 + wo + w3 + wy)M]
:hG(w1+w2+w3+w4)M, =1
Sy > max[h®( A + Ao 4+ A3 + Mg+ A5), hS(A1 + Xa + A3 + My + A5) M|
=hS(\ F A+ A3+ M+ A5)M, i =2

S; > max[hS(cq + B1 +v1 + B + ), hS (a1 + B1 + 1 + B2 + az) M]
=h%a1 + B1+m + B2+ )M, i =3,4,...,n—3

Sp—2 > max[hS(An—5 + A—a + Az + An—2 + A1), A (Ao + Ana
+>\n—3 + An—2 + /\n—l)M]
= h%An—s5 + An—a + A3+ A2+ An—1)M, i =n—2
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Sp1 > maz[h®(wp_q4 +wn_3 + wp_2 +wn_1), K (Wn_4 + wp_3 + wn_2 +w,_1)M)]
= hﬁ(wn_4 + Wp—g + W9 +wp_1)M, i=n—1

Therefore, we get

1 i=1
h8 (w1 +wetwz+ws) M
L i=2
RS(A1+X2+A3+Aa+A5) M
1 1 .
E < hS(a1+p1+y1+B2+az2) M’ i=3,4,...n-3
1 i=n-2
RS (An—5+An—a+An—3+An_2FAn_1)M
1 S
hG(wn~4+wn—3+wn~2+wn—l)M7 =N 1

For sufficiently small h, we can easily show that the matrix L is irreducible
and monotone. Therefore, L' exist and L~! > 0.
Hence,

1B = 1L~
Let 7! = (I ;), then by theory of matrices Varga[ll], we get

n—1
S Si=1 =11
=1

Therefore,
. 1
i = g
Iz = Z I < Z :
1<z<n 1 bl = S; hﬁM w1 + Wy + w3 + Wy
2 1
)\1+/\2+>\3+/\4+)\5 2a1+2/31 +m)’
i=1,...n—1and
Tl =

1<i<n—14
- i=1

The error is given by

1 2 2
E| = |L7YIT) < +
el L=l H_h6M<w1+w2+w3+w4 AMF+A+ A3+ M+ As

1
+ S —
201 + 2081 + 'Yl)
From (17), we get | T|| = O(h®) for second order method.
1 2 2 1
E| < + + O(n®
1Bl < h5M<w1+w2—|—w3—|—w4 AMtAe+ A3+ A+ A 200+ 26 +”/1> ()
= O(h?)
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Hence, the scheme is second order convergent. Similarly, we can prove the
fourth order convergence of the scheme.
For fourth order method, ||T|| = O(h'?). Then ||E| = O(h*).

Theorem. The method given by equation (16) for solving the given bound-
ary value problem (1) for sufficiently small h has a second and fourth order
convergent solution depending upon the parameters.

6. NUMERICAL EXAMPLES

To illustrate the comparative performance of our method, we consider two
examples of twelfth order linear boundary value problems with two point
boundary conditions of the form (1-2). The numerical results are carried
out using different values of h.

Example 1: Consider the twelfth order linear boundary value problem from
Siddigi and Twizell[13]

(27) y(m)(x) +ay(z) = —(120+23z+ 2% exp(z) ,0<z <1
with
y(0) = 0, y(1)=0

y20) = 0,y (1) = —de

y M) = =8, yW(1) = —16e

y90) = —24, y91) = —36e¢

y®0) = —48, y®(1) = —64e

y190) = =80, y19(1) = —100e

The exact solution is y(z) = z(1— ) exp(z) . The maximum absolute errors
in y; for the problem (27) are summarized in Table 1.

Example 2: Consider the following boundary value problem from Siddiqi
and Twizell[13]

(28) y(u)(:c) +y(x) = —12(2xcos(x) + 1lsin(x)) ,—-1<x <1
with
y(-1) = 0,y(1)=0

yP(=1) = —4cos(—1) + 2sin(—1), yP(1) = 4cos(1) + 2sin(1)
yW(-1) 8cos(—1) — 12sin(—1), y(1) = —8cos(1) — 12sin(1)
y©(=1) —12cos(—1) + 30sin(—1), y@ (1) = 12cos(1) + 30sin(1)
y®(=1) = 16cos(—1) —56sin(—1), y® (1) = =16 cos(1) — 56 sin(1)
y19(—1) = —20cos(—1) +90sin(—1), y1(1) = 20cos(1) + 90sin(1)

The exact solution is y(x) = (2 — 1) sin(z). The maximum absolute errors
in y; for the problem (28) are summarized in Table 2.
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TABLE 1. Maximum absolute errors for example 1

Method Different parame- | h =1/11 h=1/22 h=1/44
ters a1,81,m
Fourth order ( ,—1, %) 8.093x 1078 | 1.175x 1078 | 3.449x10~*
method
Second order (%0 2., §—7> 7.052x107% | 6.297x 1076 | 8.099x10~7
method
Siddigi and Twiz- - 5.582x1073 | -
ell[13]
Siddiqi and - 472 x107% | -
Akram[14]
TABLE 2. Maximum absolute errors for example 2
Method Different parame- | h =1/11 h=1/22 h=1/44
ters a1,81,m
Fourth order ( ,—13, %) 1.538x 1076 | 8.323x 1077 | 7.998x 107
method
Second  order <41—8 Z, %) 1.950x 107 | 9.263x 1076 | 1.508 x 10~°
method
(é—o, =, %) 2.138x107* | 1.793x 10~ | 1.012x 1076
Siddiqi and Twiz- - 1.366x 107 | -
ell[13]

Conclusion. In this paper, we developed a non-polynomial quartic spline
method for solving twelfth order boundary value problems with two point
boundary conditions. We reduced the given problem into a system of sixth
order boundary value problems. Then implement our method on the sys-
tem of sixth order boundary value problems. The presented scheme (16)
is second and fourth order convergent. Our main aim in this paper was to
solve a twelfth order boundary value problem by using lower degree splines.
However, in most of the previous papers, higher degree splines were used
to solve the twelfth order boundary value problems. Comparison of our
method with the existing methods Siddigi and Akram[14] and Siddiqi and
Twizell[13] in Tables 1 and 2 show that our method is better in accuracy,
applicability and efficiency.
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