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BUCKLING BEHAVIOUR OF SINGLE WALLED SHORT
CARBON NANOTUBES

PARUL TIWARI

ABSTRACT. In the present paper the study the buckling behavior of
short carbon nanotube is studied. Euler Bernoulli beam model is used
for the formulation of the problem. An efficient mathematical Galerkin
method with quintic splines is applied to determine the results. The
impact of the size of nanotube and the effect of small scale parameter
on buckling load is seen and the outputs are plotted graphically. The
obtained solutions agree with those results reported in literature and de-
termine the importance of small scale parameter in the buckling analysis
of nanostructures.
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1. INTRODUCTION

Carbon nanotube is a two dimensional hexagon lattice made up of carbon
atoms. These nanotubes were first introduced by Kroto [10] in 1985 and then
investigated by Iijima in 1991[31]. Starting from the invention, nanotechnol-
ogy is playing its vital role in nano electromechanical machines. Due to the
unique structure and possession of unique properties, the carbon nanotubes
are continuously being used in several engineering applications including so-
lar cells, micro and nano electrical and mechanical systems [40]. Mechanics
of these nanostructures plays a significant role in designing the smart and
efficient electromechanical systems. Therefore the analysis of mechanical be-
haviour of nanotubes is the key point of research for academicians as well as
for researchers and continuum mechanics modeling [18] plays a central role
to achieve this objective. This approach uses the basic laws such as law of
energy conservation [12] or momentum. This kind of modeling needs fewer
computations and thus reduces execution time. The accurate analysis of the
mechanical nature helps to get the reliability and stability of these nanos-
tructures [38]. In addition, local elasticity theory has the limitation of not
capturing the size effect; therefore several generalized continuum theories are
employed for further development of these nanostructures. The simulation
of mechanical behavior of carbon nanotubes is performed by using several
mathematical techniques [34,9]. A comparative study of the characteristics
of nanobeams is done in [8]. The value of Young’s modulus is predicted
in [20]. Exact solutions of SWCNT have been carried out in [25,1] using
different theories. Vibration response of chiral SWCNT’s using Timoshenko
beam model isshown in [16] and of DWCNT’s has been done in [3]. Wave
propogation of the carbon nanotubes is performed in [36]. A number of
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exact and numerical solutions for buckling analysis of these nanostructures
using various beam and shell theories are available in literature [11, 23, 26,
28, 33, 37]. Based on the chirality, the fundamental structure of SWCNTs
can be described as zigzag, armchair and chiral configurations. Timoshenko
(TBT) and Euler Bernoulli beam theory (EBT) is used to discuss the na-
ture of chiral SWCNT and DWCNT in [21,15]. Several numerical techniques
such as initial parameter in differential form, finite element method, differ-
ential transform method and differential quadrature methods are available
in literature to study the nature of nanostructures [7,29,30,32|. Several au-
thors in [17,19,39] applied the wavelet tool to compute the critical buckling
strain/load of nanostructures. TBT theory is used to find the critical load
for short carbon nanotubes in [22]. Thermal changes affect the stability of
the carbon nanotubes and this study is used to capture the abrupt behavior
of these small scale structures in [4]. Several beam theories are employed to
analyze the nature of carbon nanotube and effect of small scale parameter is
observed in [5,6,13,23,35]. Buckling is one of the reasons for loss in stability
and thus causes failure of the system. Thus, the determination of buck-
ling response of the nanostructures takes place, so that one can design the
CNT's based appropriate system that can be used efficiently and accurately.
In the present work, Governing system of equations is derived using Euler
Bernoulli beam theory and Galerkin’s approach is used to find the results.
While applying Galerkin method, quintic B-splines are used as the weight
function. Usage of these weight functions determines the results more accu-
rately and their convergence is fast. Impact of length of the nanotube and
of nonlocal parameter on buckling load ratio is observed and plotted graph-
ically. Results indicate that the small scale effect plays a significant role
in the buckling analysis of carbon nanotubes. Obtained results are verified
with those available in literature.

2. FORMULATION OF THE PROBLEM

Eringen’s theory states that the stress at a reference point in the system
is regarded to be a function not only strain at that point but also on the
strain states at all other points of the system. The nonlocal stress-strain
relation using this theory can be expressed according to [2] as

(1) (1- uQZQVQ) c=5:€.

where V? is the Laplacian operator, L is the size of tube, o and € are the
stress and strain tensor of order two, S is elasticity tensor of order four, ’:’
is the double dot product and g is the nonlocal parameter that determines
the small scale effect. It is important to note that in the absence of p,
the nonlocal constitutive relation reduces to classical constitutive relation.
EBT theory is used to formulate the equations of the problem under study.

According to this theory, the equations of motion are given by
dF M d d
(2) A _ <N “> =0.

de ~ O dz?  dw dx
where F4 denotes the axial force M is the bending moment, N is applied
load and w denotes the deflection field. The bending moment in terms of
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generalized displacement is given by

d*u 9 d du
3 M =-EI— —(N— ).
3) dx? + (e0a) dx ( dx)
where E is the Young’s modulus, I is the second moment of area, u = (eoa)2
is the nonlocal parameter in which eq is a constant specific to each material

and ¢ is granular distance. Assuming the axial compressive load N = N to
be constant and using equation (2-3), the above equations reduces to

d*u o du d*u

4 —FEI— — = N—5 =
) dzt +(c0a)’N dz? N dz? 0
Non-dimesionalized form of the above equation is

d*u 5 d*u
5) axt Y axe =Y
where
o ()

l N p2 — E'f/l2

The boundary conditions for single walled carbon nanotube in case of simply
supported (SS) and clamped clamped (CC) are

(7) U(fﬂ)ZM(:v)zo,atm:(),l}

u(z) =u (z) = 0,atz = 0,1
The solution of equation (5) is obtained using appropriate end supports (7).
3. SOLUTION OF THE PROBLEM

Numerical solution of the formulated problem (5) is obtained using Galerkin’s
approach. A simple MATLAB code is generated to solve the system of equa-
tions. Although the analytical solutions of the problem under study are
available in the literature, numerical method is applied to reduce computa-
tional efforts. Solution of equation (5) by Galerkin’s method is expressed
according to [14] as

n+2
(8) u(X) =Y ¢Bj(X)

j=—2
where ¢; are the node parameters to be calculated using specified end con-
ditions (7) and B; (X) are the quintic B-splines applied as a weight function
and are defined in [27] as follows

9) )
(z — ZZ'_3)O Zi—3, Zi—?)
z— zi_g)‘:’ —6(z — Zi_g)s %2, %i-1)

z €]
z €]
z — 27;,3)5 — 6(2 — 21;2)5 + 15(2 — Zi,1)5 z € [Zifl, Zz)
z €|
z €]

—_

Bi(z) = (1/h°) § (243 — 2)° — 6 (2142 — 2)° +15(2i41 — 2)° Ziy Zit1)

Zit3 — Z)E — 6 (2142 — 2)° Zig1s Zit2)
Ziy3 — 2)° z € [2i42, 2i+3)
otherwise
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1 =0,1,2,......... ,n. The solution space 0 < z < 1is discretized in to
a mesh of uniform length h = z;41 — z; such that 0 = 29 < 21 < 29 <
... < 2z, = 1.When applying the Galerkin function, all the B;(z)’s should
vanish on the boundary where the end conditions are applied, but some of
B;(z),i = —2(1)2,(n—2) (1) (n + 2) do not vanish and thus it is required
to redefine them so that they fulfill the Dirichlet’s type end conditions at
boundary. A new set of quintic B-splines satisfying the boundary u (0) =
u (1) = 0 are given according to [14] as

B;(X) - 2% B ,(X), j=-1(1)2

. B_2(Xo)
(10) B;(X)=4 Bj(X), j=3(1)(n-3)
B (X) - 255 B (X), j=(n—2) (1) (n+1)

Applying this new basis function to solve (4), we get
1

(11) / [u® (X) — w?u® (X)|B; (X)dX =0
0

Integrating each term of the equation (11) and applying boundary condi-
tions (6), we get a system of simultaneous equations that determine the
approximate value of u(X) as follows

(12) lai;]C = [bs]

4. RESULTS AND DISCUSSIONS

The lowest buckling load/strain for SWCNT is found out and the outputs
are plotted graphically. The values of material parameters employed in
numerical results for chiral single walled carbon nanotube are considered as

E =1.0TPa, I = (xr?)/4,

where 7 is the radius of the nanotube taken as 0.5 nm. The effect of slender
ratio (length to diameter ratio) on critical strain ratio is illustrated in figure
1. Different values of non-local parameter are used to observe the buckling
behavior of nanotubes with respect to different slender ratios. It can be seen
that critical load variation is more pronounced for short carbon nanotubes.
In addition, the nonlocal parameter has a significant impact on smallest
buckling load and reduces as the value of this parameter increases. It is
important to note that the critical load ratio approaches to unity for larger
carbon nanotube. It is worth mentioning that the variations in buckling load
for smaller slender ratios is nonlinear, this may be due to the reason that
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the nanotubes are more stiffer for smaller slender ratios. Similar variations
are observed in (19).
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FIGURE 1. Variation in critical buckling load with length parameter
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FIGURE 2. Variation in critical buckling load with nonlocal parameter

6. CONCLUSIONS AND FUTURE SCOPE

The present work studies the buckling response of single walled carbon
nanotube. The formulation of governing equations is obtained with appro-
priate end conditions and an efficient mathematical technique is applied to
determine the results. The findings show the relationship of critical buck-
ling load with length parameter, nonlocal parameter and end conditions.
Further, the present study illustrates the use of quintic splines to solve the
governing differential equations and to analyze the behavior of nanostruc-
tures. Since the buckling nature of nanostructures help in determining their
stability, this study will help in designing more efficient nano-electronics and
nano-composites systems.
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