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A NOTE ON CENTRAL FACTORIAL NUMBERS

TAEKYUN KIM

ABSTRACT. In this paper, we study the central factorial numbers of the
second kind. In particular, we derive some identities and recurrence rela-
tions arising from the generating function. In addition, we will give some
applications related to special polynomials and numbers.

1. Introduction

For n € NU {0}, it is well known that the stirling number of the first kind is
defined by

=0

Note that
Si(n+1,k)=S1(n,k—1) —nSi(n, k), (1<k<n). (1.2)

From (1.1), we can derive the following generating function to be

o (log (1+1¢) ) Z,CSI n, k T (see[7,8,9,10,11]). (1.3)

The stirling number of the second kind is defined as
"= 3 Sa(n, (@), (n e NU{O}). (L4)
=0
By (1.4), we easily get

;' (et — 1)k 232 n, k (ke NuU{0}), (see[4,6,7,8,9]). (1.5)
n=k
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The central factorial 2" is defined by

™ :gr;‘(JH—E —1)(:17—|—E —-2) - (x— E—I—l)
2 2 2 (L6)
=z (x+ 5 Dp_1, (n>1), (see[l,2,3,4,15]).

It is known that, for all nonnegative integer n and k (k < n), the central
factorial number t(n, k) of the first kind is defined by

n

2l — Z k. (see[4,5,12,14,15]). (1.7)

Thus, we have

n

IR K A

L et ) )
L))

|
8
~

x+

= s (n—-2)?
=Y tn—2k)ar(2® - —L
D
n 1
= tin— 2,k —2) — —(n —2)%*t(n — 2,k) pa*
kzo{ n 471 n }CL'

(1.8)

where n € N with n > 2.
By (1.8), we easily get

ummzﬂn—zk—@—im—m%m—zky(nzm,@%&qy (1.9)

It is not difficult to show that the generating function of the central number
of the first kind is given by

o (2 log (; /14 %))k - it(n, k)g, (see[17,18]), (1.10)

n=k
where ¢t € C with |¢| < 1.
From (1.9), we note that
2
2n)!
t(2n,1) =0 and t(2n+1,1) = (=1)" ( )? . (L.11)
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On the other hand,
P =g +n-De+n-2)2z@z+1) - (x—1)-(x—n+1)
=2%(2® — (n—1)%) (2% — (n — 2)?) -+ (2% — 2%) (2? - 17).

Thus, by (1.12), we get

(1.12)

2n

(2? —12)(2® = 22) - (2% — (n - 1)?) = Zt(?n, 2k)x* =2, (n e N). (1.13)

k=1

For all nonnegative integers n,k (k < n), central factorial numbers of the
second kind are defined by the coefficients in the expansion

n
= Z T(n,k)z* (see[4,14]). (1.14)
Note that
n—2
" 2, n—2 w2 ZT(TL _9 k) (k]
k=0
n—2 kz k2
= _ kl(p2 2 N
ZT(n 2, k)™ (x 1 + 4)
k=0
n—2 n—2
:ZT(n—Zk)x[k](ch ) Zk2 (n—2,k)x
o, (1.15)
—ZTnf2ka:[k+2]—|— Zk2 — 2, k)zl¥
n—2 k2
—ZTn—2 k— Zx[k]+z —T(n—2,k)xl¥
k=2

- Z {T(n —2k—2)+ %T(n —9, k)}x[k].
k=0
By (1.14) and (1.15), we easily get
2
T(n, k) :T(n—2,k—2)+%T(n—2,k), (nk>2).  (116)

From (1.6), we note that the central factorial 2™ is associated sheffer sequence
which is given by

z" ~ (1,2sinh 2t), (n >0), (see[l5)). (1.17)
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Thus, by (1.10),(1.17), we get

o0 n 1 tQ)) 2\ 2z
Zm[”]t—' _ e”(2 °g( + - (3 /14 t_) , (1.18)
o n! 2 4
It is well known that
2k

(1—22)(1— (22)?)--- (1 — (kz)?) = nz::OT(Zn, oK)z, (see[3,4]). (1.19)

In this paper, we study some properties of central factorial numbers of the
second kind. In particular, we derive some identities and recurrence relations
arising from the generating function. In addition, we give some relations between
the central numbers of the second kind and special numbers.

2. Central factorial numbers of the second kind

Let
ka: k
@) GG =1 @1)
Then, by (2.1), we get
A= !
PE @ -2 (0 PE 07 )
k
| H ( )z‘z (k€ N).
From (1.19) and (2.1), we note that
0o o k 1 k 1 1
> ren 2w =3 s 11 (7=%)7
n=0 =0 i=1,i#l
B . ' (2.2)
Z(Zl?n 2( H (W)>x2n.
=0 i=1,i£l

Therefore, by comparing the coefficients on the both sides of (2.2), we obtain
the following theorem.

Theorem 2.1. Forn >0 and k > 0, we have.

k

T(2n,2k)=212’“2( ﬁ ( _12)

=0 i=1,i#l
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Let

F(t) = 2log (%+ 1+§).

Then the inverse function of f(t) is given by

We note that the generating function of the central factorial number of the
second kind is the inverse function of the generating function of the central

factorial number of the first kind which is given by

oo

1 t ot t"
E(e2 —ez)k = ZT(n,k)H.
n==k
From (2.3), we have
- 1 : 1 %
ZT(n, k)ﬁ = H(62 em2)k = e 2l(et — 1)F

Thus, by (2.4), we have

1 k

Now, we observe that

%e’gt(et — 1)k = efgt%(et — 1)k
= (DR s ’)

o

t’ﬂ

n=k m=k

—S (3 salm B () () 5

(2.3)

(2.5)

579



580 T. Kim

From (2.3) and (2.6), we have

NE

Tk = 3 (1) (= 9)" " Sampe
= 2.7)
B n;) (Z) (- 2)m52< —m, k)k™.

Therefore, by (2.6) and (

Do

.7), we obtain the following theorem.

Theorem 2.2. Forn,k > 0, we have

Y ( > )" Sa(n —m, k)k™

=kiz(k)< V- 5)"

It is well known that the following generating function of the stirling number
of the second kind is given by

M

k

tk 1 1 k )
(1—t)(1—2t)--- (1 — kt) :—!;m<l>(l)k l

SEEQure e
(

_ i AR = i Sa(n, k)",
n=0 n=~k

where A is difference operator with Af(x) = f(z + 1) — f(x).
Now, we observe that

(71)kt2k
(=) (1 20%) (1 (k)?)
th - (—t)*
T n 20 (k)AL 28)- - (1+kt)

) (S 00)

52 1,k)Sa(n — 1, k)(— )"—l)t".

(2.9)

3

Il
Qg Mf

3
Il
<)
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Thus, by (2.9), we get

tQk 3 Y - n
AT G 09 — 2 (SRS - L))
) (2.10)
From (1.19) and (2.10), we note that
S 2n tQk
nz::oT(Qn, 2k)7" = (1—£2)(1 - (26)2) - (1 — (kt)?)
= i (Xn:sz l,k)Sa(n — l,k)(fl)"’*l)t"
n:’O l2=”0 (2.11)
- Z( il BSa(2n = )= 1)

+ Z ( Z So(l,k)Sa(2n +1 — 1, k)(_1)k—l)t2"+1.

n=0 =0
Therefore, by comparing the coefficients on the both sides of (2.11), we obtain
the following theorem.

Theorem 2.3. Forn,k > 0, we have

2n

> 8520 — 1,k) Sy (1, k) (—1)" = T(2n, 2k),
=0
and

2n+1
> Sa(2n+1—1,k)Sa (1, k)(~1)F =0.
1=0

Now, we observe that

Ly e by (8 L) (et
-3 (3 ()randr )%

Therefore, by (1.5) and (2.12), we obtain the following theorem.
Theorem 2.4. For n,k > 0, we have

Sa(n, k) = Z (7) (%)’”T(l,k).

=k
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From (2.3), we note that

gT(n,k)tT:Z%(e%e’ t)k:%e gt(et 1)]C
_ (2(_2)1%)(252(1@ ,) (2.13)
=S (X ()3

Therefore, by comparing the coeflicients on the both sides of (2.13), we obtain
the following theorem.

Theorem 2.5. Forn,k > 0, we have

T(nk)=> (Z‘) (- %)"_iSQ(i,k)k"_i

i=k

= Z ( > 2)'Sa(n — i, k)k'.

The central difference operator ¢ is defined as

5(@) = flat3) - ) (2.14)

From (2.14), we note that

() = 3 (3/(2)) = 3(f %) e 3) = fa ) - f)

and

iy 3 1 1 1 1
ésf(w)Zf($+§>*f($+§)*2f($+§)+2f(w*§)+f(3?*§)*f($*

- <§>f(a;+ ;) - (;>f(:v+ %) + (i’)f(x %) - <3>f(w g)-

Continuing this process, we obtain

k
Ffx)y=>" <I;> flz+1-— g)(q)k—l. (2.15)

=0
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From (2.3), we note that

e}
t" 1/ _e\Fk 1 &
ZT(n,k)m:m(fﬂ —e 2) = 7° 2l(et — 1)*

n=k
k
1 k 1 (1-k&
= () el (2.16)
1=0
0 k
1 k k—1 k n tn
2 (e (975
n=0 =0
Let us take f(x) = 2™, (n > 0). Then, by (2.15), we get
e k
e —DF - 2)" k> 0). 2.17
por =3 (7)) k20 .17
From (2.16) and (2.17), we have
> tn > 1 . tn
Z%T(n,k)n—! = Z_% (E(s 0 )E (2.18)

Thus, by comparing the coefficients on the both sides of (2.18), we obtain the
following theorem.
Theorem 2.6. Forn,k > 0, we have
1 Skn — T(n,k), ifn >k,
k! 0, ifk > n.

Now, we define the central polynomials of the second kind which are given by
the generating function to be

1 + . o tn
Hext(eg _e 2)k _ ZT(n,k|x)H. (2.19)
n=~k
Note that
. 1 . . . o0 tl e ” tm
¢ “le? —e 2)k—y(ez—e z)k ’_(ZT(l,k)l')<Z m')
. . =k m=0 (220)
_ n n—I "
-y <Z>T(l,k):c }n,
n=k  l=k
Thus, by (2.19) and (2.20), we get
n n -
T(n, kjz) = <l>T(l,k)x L (nyk > 0). (2.21)

When z = 0, we get T'(n, k|0) = T'(n, k).
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From (2.19), we have

%emt(eé e—%)k_%e(x—Q)t(et_l)k
1 k)t : k =1 it 1 ‘ k — z— & t
= el (e = g ()t
=1 [k B N NS N
ZZO(@X;(J“)'“ (o —g+0) )azzo(ﬁ"'““‘ )

Therefore, by (2.19) and (2.22), we obtain the following theorem.

Theorem 2.7. For n,k > 0, we have

lo"“ n [ T(nklz), ifn>Ek,
R ) itk > n.

Now, we observe that

k

5kxn+1 _ Z (];) (71)}6_[(33 - g + l)n+1

=0

k
=3 (D) ey 223)
k
b (b
1=1
k Mk k-1 k
— x——5kxn+k _ (*1)k_l$———|—l"
(r=3) ;{<l><1)} (z =5 +1)
= (z— g)ékm” + k(6Fz™ + 7 1am).
From (2.23), we note that

§Famt = (3 — 5)0%" + k(%™ + 65, (2.24)
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For n > k, by Theorem 2.7, we get

1 n 1 k iy n iy n - n
T(n+1,klx) = X — kgt = k'{(aﬁfi)dkx + k(%™ + 65 e )}

k " k " ck—1,.n
:(x,_)k‘(;k +k ,5 "l (2.25)

HOT T
= (z— g)T(n, k|lz) + kT (n, k|z) + T(n, k — 1|z),

where n, k € N with n > k.
Therefore, by (2.25), we obtain the following theorem.

Theorem 2.8. Forn,k € N with n > k, we have
T(n+1,klz) = (z+ g)T(n, klz) +T(n,k — 1|z)
Corollary 2.9. For n,k € N with n > k, we have
Tn+1,k) = gT(n,k) +T(n,k—1).

3. Further Remark

As is known, the Euler polynomials are defined by the generating function to
be

2 t"
¢ Z B
et +1€z B . n(x)ﬁ (3-1)
n=

Now, we observe that

= () S prad LS WIS

1=0
By (3.1) and (3.2), we get
o0 o0
" Lot (taz)ely ¢ i
ZETL(:E)E:Z —5) l!€(2 ) ﬁ(62_6 2)
n=0 =0

—Z(Z — ' (n l|—+x))%.

n=0 [=0

Therefore, we obtain the following theorem.
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Theorem 3.1. For n > 0, we have

n

ﬂmgzgx_%ﬁwmw%+@.

=0

For r € N, the higher-order Euler polynomials are given by the generating
function to be

(77) " =Ly 33

n=0

On the other hand,

(1) - (1) = > <r+§_ 1)(—1>l(§>’<et -1

From (3.3) and (3.4), we note that

oo

a0 - ("
I+r > 71)18(%+z)t(€% 7673)1

2
()

:i<z+ > %)lillT(n,l%—i—fv)%
(§<z+r_1> - T ) o

Therefore, by comparing the coefficients on the both sides of (3.5), we obtain
the following theorem.

Theorem 3.2. Forr € N and n > 0, we have

., " l+r—1 1. l
EP@) =3 ( l )( - (. o).

=0
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By (2.3), we get

oo

" 1 t _t\2k 1 t —t k
HZZ%T(TL,QK)—— (2/4:)!(62 —e2) = (Qk)!(e +e 2)
1 (R, » B
:W§<l>(e — et — 1)kt (3.6)
o1, 1, _
:(Q_k)'lgol_'(e 1)l(k—l)'(e — 1)kt

From (1.5), we note that

n=k i=l (37)
n—1 tn
% Sa(n — i,k —1)(~1) )n—'.
By (3.6) and (3.7), we get
00 n 1 koo n n
> 12 = e 8 (1) e
n=2k k/ 1=0n=k i=l
- n—t t
% Sa(n — ik —1)(~1) )—, s
3.8
0 )
1 n
:Z 2% ZZ(')SQ(Z’Z)
n=k <k'( k) =0 i=t \'
. n—i "
x Sa(n — i,k —1)(—1) )E
By comparing the coeflicients on the both sides of (3.8), we get
kK n
n . . nei _ [ KICHT(n,2k), ifn > 2k,
Z (Z,)Sz(z,l)Sz(n—z,k—l)(—l) = { 0 il

1=0 i=l
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