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On the asymptotic deficiency of some statistical
estimators based on samples with random size
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Abstract

In the paper we consider asymptotic deficiencies of some estimators constructed from samples
with random sizes. The case of the Poisson distribution is investigated. Some examples are
presented.

1 Introduction and summary

In classical problems of mathematical statistics, the size of the available sample, i. e., the
number of available observations, is traditionally assumed to be deterministic. In the asymptotic
settings it plays the role of infinitely increasing known parameter. At the same time, in practice
very often the data to be analyzed is collected or registered during a certain period of time
and the flow of informative events each of which brings a next observation forms a random
point process. Therefore, the number of available observations is unknown till the end of the
process of their registration and also must be treated as a random observation. For example,
this is so in insurance statistics where during different accounting periods different numbers of
insurance events (insurance claims and/or insurance contracts) occur and in high performance
information systems where due to the stochastic character of the intensities of information
flows, the size of data available for the statistical analysis can be often regarded as random.
Say, the statistical algorithms applied in high-frequency financial applications must take into
consideration that the number of events in a limit order book during a time unit essentially
depends on the intensity of order flows. Moreover, contemporary statistical procedures of
insurance and financial mathematics do take this circumstance into consideration as one of
possible ways of dealing with heavy tails. However, in other fields such as medical statistics or
quality control this approach has not become conventional yet although the number of patients
with a certain disease varies from month to month due to seasonal factors or from year to
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year due to some epidemic reasons and the number of failed items varies from lot to lot. In
these cases the number of available observations as well as the observations themselves are
unknown beforehand and should be treated as random to avoid underestimation of risks or
error probabilities.

In asymptotic settings, statistics constructed from samples with random sizes are special
cases of random sequences with random indices. The randomness of indices usually leads to
that the limit distributions for the corresponding random sequences are heavy-tailed even
in the situations where the distributions of non-randomly indexed random sequences are
asymptotically normal see, e. g., [1] — [4]. For example, if a statistic which is asymptotically
normal in the traditional sense, is constructed on the basis of a sample with random size
having negative binomial distribution, then instead of the expected normal law, the Student
distribution with power-type decreasing heavy tails appears as an asymptotic law for this
statistic.

Suppose that 6% (X1, ..., X,) and 4, (X7, ..., X,) are two competing estimators of ¢g(f), 6 €
© based on n random observations Xi,..., X, and let their expected squared errors (risk
functions) be denoted by R (#) and R, (6), respectively. An interesting quantitative comparison
can be obtained by taking a viewpoint similar to that of the asymptotic relative efficiency
(ARE) of estimators, and asking for the number m(n) of observations needed by estimator
Om(n)(X1, ..., Xim(n)) to match the performance of ¢;(Xq,...,X,). Asymptotic comparison of
the two estimators involves the comparison of m(n) with n, and this can be carried out in
various ways. Although the difference m(n) — n seems to be a very natural quantity to
examine, historically the ratio n/m(n) was preferred by almost all authors in view of its simpler
behaviour. The first general investigation of m(n) — n was carried out by Hodges and Lehmann
([5]). They name m(n) — n the deficiency of d,, with respect to d} and denote it as

d, = m(n) — n. (1.1)

Suppose that for n — oo, the ratio n/m(n) tends to a limit b, the asymptotic relative efficiency
of 6,(Xy,...,X,) with respect to 6} (X1,...,X,). If0 < b < 1,wehaved, ~ (b"! — 1)n
and further asymptotic information about d,, is not particularly revealing. On the other hand,
if b = 1, the asymptotic behavior of d,,, which may now be anything ftom o(1) to o(n), does
provide important additional information.

If lim,,o d, exists, it is called the asymptotic deficiency of 6§, with respect to 4; and
denoted as d. At points where no confusion is likely, we shall simply call d the deficiency of &,
with respect to 6.

The deficiency of 6, relative to % will then indicate how many observations one loses by
insisting on J,,, and thereby provides a basis for deciding whether or not the price is too high.
If the risk functions of these two estimators are

2 2

then by definition, d,(6) = d, = m(n) — n, for each n, may be found from
Ry (0) = Rpw(0). (1.2)

In order to solve (1.2), m(n) has to be treated as a continuous variable. This can be done in a
satisfactory manner by defining R, (¢) for non - integral m(n) as

Ruw(®) = (1 = m(n) + [m(n)]) Rmw)(0) + (m(n) — [mn)]) Rinmy+(9)
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(ct. [5]).

Generally R:(f) and R,(6) are not known exactly and we have to use approximations.
Here these are obtained by observing that RX(6) and R, () will typically satisfy asymptotic
expansions (a.e.) of the form

alf) b

R, = nr * nr+s + o (n_(TJrS)) ’ (1.3)
a@) <) (s
R, = nr + nr+s + O(TL o ))’ (1'4)

for certain (), b(#) and ¢(f) not depending on n and certain constants r > 0, s > 0. The
leading term in both expansions is the same in view of the fact that ARE is equal to one. From
(1.1) = (1.4), it now easily follows that (see [5])

_ c(f) — b(9) (1= o(n1=9
d,(0) = a0 (0 + ( ) (1.5)
Hence
+o0, 0 < s <1,
_ ) a®) — b(o) _
di9) = d rad) 1, (1.6)
0, s > 1.

A useful property of deficiencies is the following (transitivity): if a third estimator &, is given,
for which the risk R,(6) also has an expansion of the form (1.4), the deficiency d of 4, with
respect to &7 satisfies

d = di + do,

where d; is the deficiency of 8, with respect to 8, and ds is the deficiency of 8, with respect to
0r.

The situation where s = 1 seems to be the most interesting one. Hodges and Lehmann
(5]) demonstrate the use of deficiency in a number of simple examples for which this is the case
(see also [6]). The present paper consists of a number of applications of the deficiency concept
in problems of point estimation in the case when number of observations is random.

We use conventional notation: R is the set of real numbers, N is the set of natural numbers,
h(n) ~ f(n), n — oo <= lim, 0 h(n)/f(n) = 1.

2 Estimators based on sample with random size
Consider random variables (r.v.’s) Ny, Ny, ... and X, X5, ..., defined on the same probability
space (Q, A, P). By X1, X, ...X,, we will mean random observations whereas the r.v. N, will

be regarded as the random sample size depending on the parameter n € N. For example, if the
r.v. N, has the geometric distribution

P(Nn - k) - 1(1 _ l)'H, k€ N,

then
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that is, the r.v. N, is parameterized by its expectation n.

Assume that for each n > 1, the r.v. N, takes only natural values (i.e., N, € N) and
is independent of the sequence X, X5, ... Everywhere in what follows the r.v.’s X7, X5, ... are
assumed independent and identically distributed with distribution dependingon § € © € R.

For every n > 1, by T,, = T,,(X1, ..., X;,) denote a statistic, i.e., a real-valued measurable
function of Xj,..,X,. For each n > 1, we define a r.v. Ty, by setting Ty, (w) =
TNn,(w)(Xl(w)a ...,XNn(w)(w)), w € .

Everywhere in what follows it will be assumed that EN,, = n, that is, the expected sample
size equals the sample size for the case where it is non-random.

Theorem 2.1.
1. If 6 = 0n(Xa,...,X,) is any unbised estimator of g(0), that is, it satisfies

E() 5n = g(e) NS (—)7
and dn, = On,(X1,...,Xn,), then
E(] (an = g(()). 0 (S (")

2. Suppose that numbers a(), b(f) and C(#) > 0, « > 0, r > 0, s > 0 exist such that

. a(f) b(0) C(0)
‘Rn(e) T prts| S st
where )
Ri(0) = Ey (6;(X1,...,Xn) — 9(0)) ,
then
]Rn(e) ~ @) ENT — b(8) E N < ©(6) E N7
where

R.(0) = By (03, (X1..... Xn,) — 9(0))".
Proof. The proof follows from the total probability formula

Ep Oy, = Z By ok P (N, = k) =
k=1

:ig(e)P(Nn:k:) :g(H)ZP(ank) = g(#), 6 € O.
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O
Corollary 2.1.
Suppose that numbers a(f), b(0) andr > 0, s > 0 exist such that
ey @8) L b(0)
R"(H) - nr + nrts
where )
then
Rn(0) = a(0) EN," + b(0) EN,",
where

R.(0) = Ep (04 (X1,..., Xn,) — 9(0)".

Let observations X1, ..., X,, have expectaion
Eg X1 = g(())

and variance

Dy Xi = o%(0).

The customary estimator for g(#) based on n observation is

n
- 1
n
i=1
This estimator is unbiased and consistent, and its variance is

o*(0)

n

If this estimator is based on sample with random size, we have (see Corollary 1.1)
R,(0) = Dy én,(X1,...,Xn,) = o*(0) EN, .

If g(f) is given, we consider the estimator for 02(#) in the form

D MO

(2.2)

(2.3)
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This estimator is unbiased and consistent, and its variance is

R0) = 0,5, = MO 7O ) — £ (0 - g0))" (2.5)

For this estimator with random size one has
R,(0) = Dy on, (X1,...,X,) = (,u4(0) — 04(0)) E Nn‘l. (2.6)

Suppose now that g(f) is unknown but that instead of (2.4) we are willing to consider any
estimator of the form (see (2.1))

- ~ 1 - 2
M =4, = E X; — On 3 R. 2.
0 =0 Nty L ( ) Y€ (2.7)

If v # —1, this will not be unbiased but may have a smaller expected squared error than the
unbiased estimator with v = —1.

One easily finds that (see [1], (3.6) and [2])

Ri(0) = Ep (5u(X1,..., X)) — 0*(0))° =

= =22 (0 = 1) ((u®)/e*O) - D (0 = 1) +2) 40y +172) (28)

and hence 4

L O 1) = 2(6)/080) =1 + 2 = 29(u(9)/0"(6) —1)

n2

) + 0(n7®). (29

Using Theorem 1.1, we have

R.(0) = Ep (0n,(X1,..., Xn,) — 0%(0))° =
= o"(0) ((u@®)/'(®) ~1)E N +

+((r + 1% =2 (ua(0)/0"(0) =1) + 2 =29(ua(8)/0"(6) —1)) E Nn‘?) + O(EN.?). (2.10)
0

3 Deficiencies of some estimators based on samples with
random size

When the deficiencies of statistical estimators constructed from samples of random size Ny, ()
and the corresponding estimators constructed from samples of non-random size n (under the
condition E N,, = n) are evaluated, we actually compare the expected size m(n) of a random
sample with n by virtue of the quantity d, = m(n) — n and its limit value.

We now apply the results of section 2 to the three examples given in this section. Let M,
be the Poisson r.v. with parameter n — 1, n > 2, i.e.

(n — 1

P(M, = k) = e T

kE=0,1,...
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Define the random size as
N, = M, + 1,
then
EN, =n
and )
- — 1)k 1 — e
E N—l — 1 n ’fl
n Zo (k+1)! n — 1
Then 1 1
ENT = = — —2). 1
- -+ + o(n7?) (3.1)
The deﬁaency of dy, relative to 4, ( see (2 1)) is glven by (2.2), (2.3), (3.1) and (1.6) with
r=s= 1,a(f) = %), b(®) = 0, c(§) = 0*(0), and hence is equal to
d =1 (3.2)

Similarly, the deficiency of dy, relative to &, (see (2.4)) is given by (2.5), (2.6), (3.1) and (1.6)
withr = s = 1,a(0) = c(0) = (0 — o*(0), b(#) = 0, and hence is equal to

d = 1. (3.3)
Consider now third example (see (2.7)). We have

EN lnoon—l _elfni(n—l)k

2|_ _
Ok:—l-lk n 1k:1

elfn n—1 e — 1
= / d .
n —1 J x

Then, using L’Hopital principle we obtain

n—1 et — 1 en—l
dx ~ , n — o0
0 T n —1

and

1
EN,> ~ =, n — o (3.4)
n

Now the deficiency of dy, relative to 6, (see (2.7)) is given by (2.9), (2.10), (3.4) and (1.6) with
r = s = 1 and hence is equal to

d =1 (3.5)

and the deficiency of 51(\7:) relative to 35\7:) (see (2.7)) is given by (3.1), (3.4) and (1.6) with
r = s = 1 and hence is equal to

7 (A ’)/1+"/2+2_
Ay = (m V2) (/t4(9)/04(9) 1 2)- (3.6)

The classical 51(33 is thus better than 55\;’1) when

/1,4(0) 1
_1 -
74(9) )
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with the situation reversed when

ma(0) 1 < 1
a*(0)
When X; is normal, in particular, ©
Ha
1(0) -1 =2
and i )
dyy = B) m =)+ - 2). (3.7)

One can therefore save an expected 3/2 observations by using the biased estimator 5&2 The

best value of v in the normal case is v = 1 for which dO,l = 2 and which therefore provides
an additional saving of 1/2 observations.

These examples illustrate the following;:
Theorem 3.1.

Suppose that numbers a(0), b(0) and ki, ko exist such that
a(0) |, b(0)

R;((g) = T + F = 0(7’1_2)
and ) &
EN =~ 4 n—; + o(n?),
_ k _
EN? = 2 oy,

EN? = o(n_Q),
then the asymptotic deficiency of on, (X1, ..., Xy, ) with respect to 6,(X1,...,X,) is equal to

ky a(0) + b(0) k2 — b(0)

46) = a(0)

For a proof, see Theorem 2.1 and (1.5), (1.6).
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