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Abstract

Let G = (V,E) be a graph and P, = {V4, V5, ..., Vi } be a partition of V.
The L-matrix with respect to a partition Py of the vertex set V' of graph G of order
n is the unique square symmetric matrix P(G) = [a;;] with zero diagonal, whose
entries a;; with ¢ # j are defined as follows:
(i) If v;, v; € V,, then a;; = 2 or —1 according as v;v; is an edge or not.
(ii) If v; € V,. and v; € V; for r # s, then a;; = 1 or 0 according as v;v; is an edge
or not.
For all V; and Vj in Py, i # j remove the edges between vertices of V; and V; and add
the edges between the vertices of V; and V; which are not in G, the resulting graph
is called k-complement of G and is denoted by @ For each set V,. in Py, remove
the edges of G joining the vertices within V;. and add the edges of G (complement
of G) joining the vertices of V., the graph obtained is called k(7)-complement and is
denoted by (G) k(i) The k-partition energy of a graph G with respect to partition P
is denoted by Ep, (G) and is defined as the sum of the absolute values of k-partition
eigenvalues of P(G). In this paper we construct some graphs such that the graph
and its 2-complement are equienergetic with respect to a given partition. We also
determine partition energy of complete product of m copies of a circulant graph G
and its subgraph, their k-complement and k(7)-complement.

KEYWORDS: k-partition eigenvalues, k-partition energy,Complete product, Equienergetic
graphs, Block circulant matrix.
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1 Introduction

In graph theory several matrices like adjacency matrix, Laplacian matrix, distance
matrix, are associated with a graphs and studied extensively for more than 30 years.
Motivated by this recently E. Sampathkumar and M. A. Sriraj in [8] have introduced
L-matrix of G = (V, E) of order n with respect to a partition P, = {V4,Va,...,Vi} of
the vertex set V. It is a unique square symmetric matrix P;(G) = [a;;] whose entries
a;; are defined as follows:

2 if v; and v; are adjacent where v;, v; € V;,
—1 if v; and v; are non-adjacent where v;, v; € V/,
a;;j =4 1 if v; and v; are adjacent between the sets
V, and V; for r # s where v; € V;. and v; € Vj,
0 otherwise

This L-matrix determines the partition of vertex set of graph G uniquely. The
partition of V into independent sets Vq, Vs, - -+ |V} leads to vertex coloring of graph G.
Note that if £ is the chromatic number of G, then k-partition energy and color energy
introduced by C.Adiga et.al in [1] are same. Further in [9], we have introduced k-
partition energy of a graph G denoted by Ep, (G) and defined as the sum of the absolute
values of k-partition eigenvalues of G. Here k-partition eigenvalues of G are eigenvalues
of P,(G). If the vertex set of a graph G of order n is partitioned into n sets then the
partition energy coincides with the usual energy of a graph. So partition energy may be
considered as a generalization of energy of a graph introduced by I. Gutman in [3]. For
more details on graph energy see [4].

In this paper we construct some graphs such that the graph and its 2-complement
are equienergetic with respect to a given partition. We also determine partition energy
of complete product of m copies of a circulant graph G and its subgraph, their k-
complement, k(i)-complement.

PRELIMINARIES

In this section, we give some definitions and results which are useful to prove our main
results.

Definition 1.1. [6] Let G be a graph and P, = {V1,Va, ..., Vi.} be a partition of its vertex
set V. Then the k-complement of G is obtained as follows: For all V; and V; in Py, i # j
remove the edges between V; and V; and add the edges between the vertices of V; and V;
which are not in G and is denoted by @

The matrix of k-complement is obtained from L-matrix Py (G) as follows: In Px(G)
interchange 1 and 0 in the non-principal diagonal entries. The matrix thus obtained is
the matrix of Gy and denoted by Py((G),).
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Definition 1.2. [7] Let G be a graph and P, = {V1, Va, ..., Vi.} be a partition of its vertex
set V.. Then the k(i) complement of G is obtained as follows: For each set V, in Py,
remove the edges of G joining the vertices within V,. and add the edges of G (complement
of G) joining the vertices of V,., and is denoted by (G)k(z')'

The matrix of k(%)-complement is obtained by interchanging 2 and —1 in the matrix
P,(G) and is denoted by Py((G);))-

Definition 1.3. The complete product of two graphs G1 and Gy is obtained by joining
every vertex of G1 to every vertex of the other graph Go and denoted by G1VGs.

Definition 1.4. Two graphs of same order are said to be equienergetic if E(Gy) =
E(G9).

Definition 1.5. [2] Let A1, Ag, -+, Am be square matrices of order n. A block circulant
matriz of type (m,n) (of order mn) is an mn x mn matriz of the form

Al Ay ... An

A, A ... Ana
beirc(Ay, Ag, -+, Ap) = . . .

Ay Az ... A

Definition 1.6. [2] Let A be of type (m,n). If this matriz is circulant and if each block
is circulant, then A is called a block circulant with circulant blocks and we say that it is
of the class BCCBy, .

Definition 1.7. [2] Let A and B be matrices of order m x n and p x q respectively.
Then the Kronecker product(Tensor or Direct product of A and B)
is the mp x nq matriz defined by
annB aipB -+ aipB
A®B= Lo :
amlB am2B e amnB
Now we state the following results which are used for computation of spectrum
of block circulant matrices.
Lemma 1.8. [2] Let
Ag Ay
Ay Ag
be a symmetric 2 x 2 block matriz. Then the spectrum of A is the union of the spectra
of Ag+ A1 and Ag — A;.

Theorem 1.9. [2] All matrices in BCCBy,, are simultaneously diagonalizable by the
unitary matriz F, @ F,. Hence they commute. If the eigenvalues of the circulant blocks

A=

are given by Ngv+1,k = 0,1,2,--- ;m — 1, the diagonal matriz of the eigenvalues of the
m—1

BCCB matriz is given by Z QF @ Apy1 where Agyr = diag(/\gkﬂ), )\gkﬂ), e ,\2’““)),
k=0

OF, = diag(1*,wk, -, w™= V%) and w = exp(E).
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2 Construction of some equienergetic graphs with respect

to a given partition

In this section, we construct some new graphs such that 2-partition energy of the
graph and its 2-complement are same. For n > 2 and n = 0(mod d), we consider
two copies of K, with vertex sets, Vi = {ui,ug,...,un} and Vo = {v1,ve,...,0,}
respectively. Now we construct a (n — 1 + d)-regular graph G = (V,E), with V =
V1 U Vs, and the edge set E = {ujuj,v;vj, wpyivej © V4,5 € {1,2,...,d}}, where
t=0,d,2d,...,(Il—1)d.

Vi

Va
vl
/ >< (%]
u3 >< v
i. o

N —

X

In the above graph we have n =4 and d = 2, P, = {V4, Va}. Its matrix P»(G) is

02 2 2 1 100
20 2 2 1100
2 20 2 0 011
2220 0 011
1100 02 2 2
1100 2 0 2 2
0011 2 20 2
0011 2220

In the following theorem we find the 2-partition energy of the above constructed graph
G, its 2-complement, 2(i)-complement and discuss the conditions under which the graphs
are equienergetic with respect to the given partition.

Theorem 2.1. Let G = (V, E) be the graph constructed as above and Py = {Vi,Va} be
a partition of V. where Vi = {u1,ua,...,un} and Vo = {v1,ve,...,v,}. Then

(1) G and (G)2 are equienergetic with respect to Pa. Moreover

Ep,(G) = Ep,((G)2) = 10n — 4% — 2d — 4, where d # 1,
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(ii) Ep,((G)a@)) = 6n — 2% — 2d — 2, where d # 1.
Proof. (i) The matrix of the graph G stated above with Py = {V;,Va} is of the form

A B
P 2 (G) —\B A
Here A and B are block circulant matrices of order n with [ blocks of order d. In A, the
blocks corresponding to principal diagonal are such that, all its principal diagonal entries
are 0’s, non principal diagonal entries are 2 and all other blocks have the entries 2. In
B, the blocks corresponding to principal diagonal are of order d and all its entries are
1’s and entries in the remaining blocks are 0’s. By Lemma 1.8, the spectrum of P(G) is
the union of the spectra of A+ B and A — B. Since A and B are block circulants with
circulant blocks, it follows that A+ B and A — B are also block circulants with circulant
blocks. From Theorem 1.9 we can write the diagonal form of A + B as

-1
Z Q;ﬁ ® /\k+1,
k=0
where Agpy1 = diag(/\(lkﬂ), /\gkﬂ), cee /\&kﬂ)) represents the diagonal matrix of eigenvalues
of Ay4q and Q;“ = diag(lk, whk, .. ,w(lﬁl)k).
A1 A2 A2 Bl A2 A2
A2 Ar Ag Ay By Ay
Here A+B is of the form | . . . and A—Bisof the form | . . .
A2 A2 A1 nxn A2 A2 Bl
1 3 3 2 2 ... 2 -1 1 1
31 3 2 2 2 1 -1 1
where A1 = . Ay = . and By = .
3 3 1 dxd 2 2 2 dxd 1 1 —1 dxd
Thus, we get the diagonal form of A+ B as
AL+ (I—1)Ag 0 0
0 N — ANy ... 0
0 0 AN AV nxn
where Ay = diag(3d — 2,—2,-2,...,—2) and Ay = diag(2d,0,0,...,0) represent the

matrices of eigenvalues of A; and Ay respectively.
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Hence, eigenvalues of A + B are

2(n—1)+d once
d—2 l—1 times
-2 n—1 times.

Similarly the diagonal form of A — B is

AL+ (L= 1)Ag 0 0
0 /\% — Ny ... 0
0 0 c. /\% — No nxn
where A} = diag(d — 2,-2,-2,...,-2) and Ay = diag(2d,0,0,...,0) are matrices of

eigenvalues of By and Ay respectively.
Thus, eigenvalues of A — B are

2(n—1)—d once
—d—2 l—1 times
-2 n—1 times.

Hence, 2-partition eigenvalues of G are

2(n—1)+d once
2(n—1)—d once
d—2 l—1 times

—d—2 l—1 times
-2 2n — 21 times.

Therefore,
Epy(G) =| 2(n—1)+d | + | 2(n—1)—d | +(1-1) | (d=2) | +2n—20) | (=2) | +(1=1) | (~2—d) | .

Ep,(G) = 10n—41—2d — 4 =10n — 4% —2d —4 for d+# 1.
Further, if d =1, d = 2 and d = n, then Ep,(G) = 8(n —1).

Also the matrix of (G)g is

— A C
Py(G)2 = c T a

In C, all the blocks corresponding to principal diagonal are null matrices and remaining
blocks have the entries 1. Proceeding as above, the eigenvalues of A + C' are

3n—d—2 once
—d—-2 l—1 times
-2 n—1 times.
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Similarly the eigenvalues of A — C' are

n—2+d once
d—2 l—1 times
-2 n—1 times.

Hence, the 2-partition eigenvalues of Py(G)y are

3n—2—d once
n—2+d once

d—2 -1 times
—d—2 -1 times
-2 2n — 2l times.

Ep, (@) =1 8n-2-d | + | n=24d | +(1-1) | (d-2) | +2n-2) | (-2) | +(-1) | (~2-d) .
Ep,((G)2) = 10n — 41 — 24 — 4 =100 — 4% —2d — 4. for d#1

For d =1 and d = n, Ep,((G)2) = 8(n —1).
Thus G and (G)2 are equienergetic with respect to the given partition P.

(iii) The matrix of (G)y(;) is

— D B
Py(G)auy = BT D)
where D is obtained from A by replacing 2 by -1. With similar discussion, the eigenvalues

of D+ B are
d—n+1 once

d+1 l—1 times
1 n—1 times

and the eigenvalues of D — B are

1—d—n once
1-d l—1 times
1 n—1 times.

Thus, the 2-partition eigenvalues of (G)o(;) are

d+1—n once
1—d—n once
1+d l—1 times
1-d l—1 times
1 2n — 2l times.

S Ep((Gyyy) =l d+1-n | + [ 1=d—n [ +(-1) | (1+d) | +(2n-20) | 1 | +(I=1) | (1-d) | .
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For d =1, L

EPQ((G)Q(i)) =4(n—1),
for d = n, L

EPQ((G)Q(i)) =dn -2,
and

Ep,((G)ag)) = 6n — 2% —2d—2 for d#1.
0

3 Partition energy of complete product of m-copies of a
circulant graph

In this section we obtain partition energies of complete product of m-copies of a
circulant graph, its subgraph obtained by deleting some edges, their k-complement and
k(i)-complement.

Theorem 3.1. [9] If G is a r-regular graph with n vertices and 3r —n+1, Xg, Az, ..., A
are eigenvalues of P1(G), then 1-partition eigenvalues of its 1(i)-complement (G),(;) are
2n—3r—2,—X—1,—-A3—1,...,—\, — L.

Theorem 3.2. Let G; = (Vi, E;), where i = 1,2,...,m be the i" copy of an r-
reqular circulant graph G = (V, E) of order n and S denote the complete product of
G1,Gay...,Gpm. Then

(1)Ep,,(S) =mEp, (G)—m | 3r—n+1|+ | 3r—n+1+n(m—1) | +(m—1) | 3r—2n+1 .

(i1) Ep,, ((S)m) = mEp,(G).
(i) Ep,, (S)m@) =| 2n—3r—2+m(n—1) | +(m—1) | n=3r—2 | —m | 2n—3r—2 | +m(Ep, (G)1()),

where Py, = {V1,Va, Va,..., Vi, } is the partition of the vertex set of S.
Proof. (i) The matrix of S with respect to Py, = {V1,Va,V3,...,V,} is

Ay Ay o A

A2 A1 . A2

A2 A2 e Al mnxmn
1 1 1
11 1

where A1 = Pi(G) and A =
1 1 ... 1
nxn

Let Ag, A1, ..., An_1 be the 1-partition eigenvalues of G. Since G is r-regular,
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Ao = 3r—n+1. We know that Ay = diag(3r—n+1, A1, ..., \y—1) and Ay = diag(n,0,0,...,0)
are the matrices of eigenvalues of A; and Ay respectively. Then from Theorem 1.9 the
diagonal form of P, (S) is

A1+ (m—1)Ag 0 0
0 N —ANgy ... 0
0 0 AN AV ]

mnxmn

Here A1 + (m — 1)Ag = diag(3r —n+ 1+ (m — 1)n, A\1,..., \p1) and Ay — Ay =
diag(3r —2n+ 1, A1, ..., Ap_1)-
Hence, m-partition eigenvalues of S are

3r—n+1+(m—-1)n once

r—2n+1 m—1 times
A1 m times

Ao m times
A1 m times.

Thus,
Ep, (S)=mEp (G)—m |3r—n+1|+|3r—n+1+n(m—1) | +(m—-1)|3r—2n+1].

(ii) The matrix of (), is

Ay By -+ By

_ BQ A1 Bg
Pm((S)m) = . . . . )

By By --- A

mnxXmn

where A; = P1(G) and Bj is a null matrix of order n. We know that A1 = diag(3r —
n+1,A1,...,\,_1) is the matrix of eigenvalues of A1 and A} = diag(0,0,...,0) is the
matrix of eigenvalues of By. Then, from Theorem 1.9 the diagonal form of .S,, is

A1+ (m—1)A] 0 0
0 A=A L 0
0 0 /\1—/\% mnxmn

Hence, m-partition eigenvalues of (5),, are

3r—m-+1 m times
Al m times
m  times

A2

A1 m  times.
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Thus,

Ep,,((S)m) = mEp, (G).
(iii) The matrix of (), is

B, Ay - Ay
_ Ay By --- Ay

Po((S)ma) = . . .. ;
Ay Ay - B

mnxmn

where Bl = Pl(G)l(z)

We know that the matrix of eigenvalues of As is Ay = diag(n,0,0,...,0) and of B;
is Al = diag(2n —3r —2,-A\; —1,—Xa — 1,...,—\,_1 — 1) as stated in Theorem 3.1.
Proceeding as in (i), we get the m-partition eigenvalues of S,,,;) as

2n—3r—2+n(m—1) once

n—3r—2 m—1 times
-\ —1 m times
—Xo—1 m times
—An_1—1 m times.
n—1
Thus, Ep,, (S)m@) = 2n—=3r—=2+n(m—1) [ +(m—1) [n—3r—2| —b—mz | =Xj—1].
j=1

Hence,

Ep,, (S)m@) =| 2n—=3r—2+n(m—1) | +(m—1) [ n=3r—=2 | —=m | 2n—3r—=2 [ +m(Ep, (G)1z;))-
O

As a consequence of the above theorem we have the following corollaries.

Corollary 3.3. If G = K,, where n > 2, then
(1) Ep, (S) = mEp, (K,).

(ii)Ep,,((S)m) = mEp, (Kn).
(4)Ep,, (S)m() = 4mn — dn — 2m + 2.

Corollary 3.4. If G = C,,, then
(i) Ep,,(S) =mEp (Cp)+ | 7—2n+mn|+(m—-1)|7—2n|—-m|7—n|.

(i) Ep,,((S)m) = mEp, (Cn).
(1) Ep,, (S)m@ = mn+n—8|+(m—1) |n—8 [ —m|2n -8 [ +mEp (Cpn)1)-

The above Corollaries 3.3 and 3.4 have been proved in [5].
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Observation 3.5. If we know 1-partition eigenvalues of circulant graph G, then we can
find m-partition eigenvalues and m-partition energy of S, Sm, Spm(i), where S is defined
as in Theorem 3.2.

Observation 3.6. The graphs S and (S),, in Corollary 3.3 are equienergetic with respect
to Py,.

Theorem 3.7. Let G; = (Vi, E;), where i = 1,2,...,m be the i copy of an r-
regqular circulant graph G = (V,E) of order n and S denote the complete product of
G1,Ga,-++ ,Gy,. If H = (V' E’) is the subgraph of S obtained by removing the edges

VisVjs for 1 <i < j<mand s =1,2,...,n, then
(i)Epm(H):\3r—n+1+(m—1)(n—l)|+( -1 |[3r—2n+2|+
n—1
S IA—(m—1)|+( —1)Z|)\+1|
i=1

(i4) Epmm:mjl—n—l-l—i-(m—l)\—t-( —1)|3'r—n|+

> A+ (m —1)|+(m—1)2|)\—1|
j=1 j=1
@0 Epm(H)m(i):|2n—3r—2+(n—1)( —I)H-(
Z|—)\ —m |+ (m

ONEY
where (3r —n + 1 /\1, ..y An_1) represent the 1—partztwn eigenvalues of G and P,
{‘/15‘/25‘/37' <. 7Vm}

—1n—-3r—-1]+

Proof. (i) The matrix of H with respect to P, = {V1,Va,...,Viu} is of the form

A Ay - Ay
Ay Ap oo A
P,(H) = . . . )
A2 A2 e A1 mnxmn
01 ... 1
1 0 ... 1
where Ay = P1(G) and Ay =
11 ... 0
nxn
Clearly, A1 = diag(3r — n+ 1, A1,..., A\—1) and Ay = diag(n — 1,—1,—-1,...,-1)

represents the matrix of eigenvalues of A; and As respectively. Then proceeding as in
() of Theorem 3.2, we get the m-partition eigenvalues of H as follows:

3r—n+14+(m-1)(n-1) once
3r—2n+2 m—1 times
Aj—(m—1) for j=1,2,....,n—1

Aj+1 for j=1,2,...,n—1, m—1 times.

279
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Hence,
Ep, (H)=|3r—n+1+(m—-1)(n—-1)|+(m—-1)|3r—2n+2|+
n—1 n—1
SN —m=1)+m=-1)) | N+1]
j=1 j=1
(74) The matrix of m-complement of H is of the form
A By - By
_ BQ A1 R BQ
Pon(H)m = | . : . : ’
B2 32 T A1 mnXmn
1 0 . 0
01 ...0
where A1 = P1(G) and By =
00 ... 1
nxn

Clearly, Ay = diag(3r —n + 1,A1,...,\y_1) and A} = diag(1,1,1,...,1) represent the
matrix of eigenvalues of A; and Bs respectively. With arguments similar to those in
Theorem 3.2, we get the m-partition eigenvalues of (H),, as follows:

3r—n+1+4+(m-1) once
3r—n m—1 times
Aj+(m—1) for 7=1,2,....n—1
Aj—1 for j=1,2,...,n—1, m—1 times.

Thus,
Epm(H)m—|3r—n+1+(m—1)|+(m—1)|3r—n\+
-1

Z\,\ +(m—1)|+( —1Z|,\J—1\

(747) The matrlx of m(i)-complement of H is of the form

By Ay - Ay
Ay B1 --- Ay

Po(H)may =1 . . . . ;
A2 A2 - By

mnxXmn

where B; = P1(G)1(1) and Ay as in (i). From Theorem 2.2, Al = diag(2n — 3r —
2, -\ —1,...,— A1 — 1) and Ay = diag(n —1,—1,—1,---, —1) represents the matrix
of eigenvalues of By and Ay respectively. With arguments similar to those in Theorem
3.2, we get the m-partition eigenvalues of (H),,(;) as follows:

2n—3r—2+(n—-1)(m-1) once
n—3r—1 m—1 times
—Aj—m for j7=1,2,....n—1

—Aj for j=1,2,....n—1, m—1 times.
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Hence,
Ep,(H)pu =2n=3r—=2+n—-1)(m~-1)[+(m—-1)[n—-3r—-1]+

n—1 n—1
Dl=d—ml+m=1)>" =X\
Jj=1 j=1
As a consequence of the above theorem, we have the following corollary.

Corollary 3.8. If G = K,, where n > 2, then

(1) Ep,,(H) = 4m(n — 1) = mEp, (Ky).

(i3) Ep,,(H)m =6(m —1)(n—1), for m > 2 and
Ep, (H)m =8(n—1)=2Ep (K,) for m=2.

(iii) Ep,, (H)m@) = 2(n —1)(3m — 4), for m > 2 and

Ep,,(H)m@ = 4(n — 1) =2Ep (Kn)1s), for m=2.

Observation 3.9. The graphs S considered in Corollary 3.3 (i) and H in Corollary 3.8
(i) are equienergetic with respect to the given partition Pp,.

Observation 3.10. For m = 2, the graphs H and H,, are equienergetic.

Theorem 3.11. [9] Let G1 = (V1, E1), Go = (Va, E3) be two r1, o reqular graphs of
order ny and ny. Suppose V.=V, U Vy is the 2-partition of G1VGe = (V, E). Then

EP2[G1VG2] :Epl[Gl]‘FEpl[GQ]— | 3ri —n1+1 | — | 3ro —ng +1 | + | a | + | [ |7

where
oy = 3(r1+72) — (n1+mn2) +2+ \/9(1“1 —19)%2 + (n1 + n2)? — 6(n1 — n2)(r1 — r2)
= 5 ,
g = 3(r1+72) — (N1 +mn2) +2— \/9(7'1 —719)2 + (n1 +n2)? — 6(n; — na)(r — r2)

2

Theorem 3.12. Let G; = (Vi, E;), where i = 1,2,...,m be the i*" copy of an r-
reqular circulant graph G = (V, E) of order n and S denote the complete product of
Gl, GQ» e 7Gm: then

(1) Ep,(S)=(m—=2)|3r—=3n+1|-m|3r—n+1|+mEp (G)+ | 1|+ | a2 |,

6r — 6n + 2mn + 2 + /3(2ln — mn)% + (mn)?
2 b
6r — 61 + 2mn + 2 — \/3(2ln — mn)2 + (mn)?
g = )
2
P ={U1,U2}, Up=ViuWVu-- UV, and U =V 1 U Vo U--- UV,

where op =

281
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(ii) Ep,(S)2 = Ep,(C1) + Ep,(Ga).

(iii) Epy(S)asy = (m—1)|3n—3r =2 -m |2n—3r —2[+ |3n—3r—mn—2|
‘l"rnE‘P1 (G)l(z)

Proof. (i) The matrix of S with respect to Py = {Uy, Uz} is Po(S) = P>(G1VG2) where
(G1 represents the complete product of | copies of G and G2 represents the complete
product of m — [ copies of G. Clearly, G has nl vertices and is (r + (I — 1)n)-regular
and G has (m —[)n vertices and is (r + (m — [ — 1)n)-regular. Then from Theorem 3.11
we get,

Ep,(G1VGs2) = Ep, (G1)+Ep,(G2)— | 3r—3n+2ln+1| — | 3r—3n+2mn—2ln+1 | +

lan |+ az, 3.1)
where

_ 6r —6n+2mn + 2 + /3(2ln — mn)? + (mn)?

a1 = )
2

6r — 6n + 2mn + 2 — 1/3(2ln — mn)? + (mn)?

o = .
2

With simplification similar to that in Theorem 3.2, we get

Ep(Gy)=|3r—3n+2in+1|+(1—-1)|3r—=3n+1|-1|3r—n+1]|+IEp(G)

and

Ep (G2) =| 3r—3n+2mn—2in+1|+(m—101-1) |3r—3n+1|—-(m—=1) |3r—n+1]|+
(m —1)Ep,(G).

Substituting this in equation (3.1) we get,

Ep,(S) =Ep,(G1VGe)=(m—2)|3r—=3n+1|-m|3r—n+1|+mEp (G)+
o |+ | ag .

(74) The matrix of 2-complement of S is Py(S)2 = P2(G1VG2)e = Po(G1 @ Ga).
Clearly, the 2-partition eigenvalues of (S)2 are l-partition eigenvalues of G; and Ga.
Thus,

Ep,(5)2 = Ep,(G1) + Ep, (Ga).
(iii) The matrix of 2(i)-complement of S is Pa(S)sx) = P2(G1VGa2)a)-

Here (G1)1(;) has nl vertices and is (n —r — 1)-regular and (G2);(;) has (m —[)n vertices
and is (n —r — 1) - regular. Then from Theorem 3.11 we get,

EPQ(G]VGQ)Q(U = E’p1 (G1)1(1)+EP1 (Gg)l(i)— | 3n—3r—Iin—2 | - | 3n—3r—mn-+in—2 |
tloa|+]az]. (3.2)

It can be easily observed that
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Ep (G1)1g) =[3n—=3r—In—2|+(1—1)[3n—3r—2| —1|2n—3r — 2| +lEp (G) (),

Ep, (Ga)1s) =| 3n=3r—mn+In—=2 | +(m—1-1) | 3n—=3r—2| —=(m—1) | 2n—=3r—2 | +
(m = DEp (G)i(),

a1 =3n—3r—2and as = 3n—3r —mn — 2.

Substituting this in equation (3.2) we get,

Epy(S)ay =(m—1)[3n—=3r—2|-m|[2n—3r—2|+[3n—3r—mn —2 |
+mEp1(G)1(i). O

References

[1] C. Adiga, E. Sampathkumar, M. A. Sriraj, Shrikanth A. S, Color energy of a graph,
Proc. Jangjeon Math. Soc., 16 (2013), No. 3, 335-351.

[2] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.

[3] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz,
103(1978), 1-22.

[4] X. Li, Y. Shi and I. Gutman, emphGraph Energy (Springer, New York, 2012).
doi:10.1007/978-1-4614-4220-2.

[5] S. V. Roopa, K. A. Vidya, Partition energy of graphs constructed using
Complete graph and Cycles. Proc. National Conference on Advances in Mechanical
Engineering and Applied Sciences. Dayananda Sagar College of Engineering,
Bengaluru, (AMEAS- 2016 ) with ISBN No0:978-93-84935-77-1.

[6] E. Sampathkumar, L. Pushpalatha, Complement of a Graph: A Generalization
Graphs and Combinatorics, 14 (1998), No. 4, 377-392.

[7] E. Sampathkumar, L. Pushpalatha, C. V. Venkatachalam and Pradeep Bhat,
Generalized complements of a graph, Indian J. pure appl. Math., 29(6)(1998), 625-
639.

[8] E. Sampathkumar and M. A. Sriraj, Vertex labeled/colored graphs, matrices and
signed Graphs, J. of Combinatorics, Information and System Sciences, 38(2014),
113-120.

[9] E. Sampathkumar, S. V. Roopa, K. A. Vidya and M. A. Sriraj, Partition Energy
of a graph, Proc. Jangjeon Math. Soc., 18(2015), No.4, 473-493.

283



