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THE CERTAIN SUMMATION INTEGRAL TYPE
OPERATORS AND ITS INVERSE THEOREM

PRASHANTKUMAR PATEL AND VISHNU NARAYAN MISHRA

ABSTRACT. In [1], Patel and Mishra introduced and discussed Stancu
type generalization of integral modification of the well-known Baskakov
operators with the weight function of Beta basis function. Simultaneous
approximation results of these operators were established by Patel and
Mishra [2]. The present paper deals with detail proof of inverse theorem
of these operators.
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1. INTRODUCTION

In 2015, Patel and Mishra [1, 2] extended, the study of the Baskakov-
Durrmeyer operators with three parameters, which was defined as follows:
For z € [0,00),y>0,0< a <8

Bg’,g(f’ T) = Zosn’k”y(x)/o Un oy (E) f (%) dt +sn,0~(0)f <n _C; 6) )

where
o (@)= LETR ()
PRI TR DTG (14wt

and
oty = RETEED Gt
TR TRIDG 4L (14 g)s TR

Since the operators B,(fo (f,) contains summation and integral sign, some-
times this type of operators known as summation-integral type operators.
For particular case, i.e. « = 8 =0 and v = 1, the operators Bg”(l](f, -) reduce
to the operators studied by Finta in [3]. Many other researchers work in this
direction and obtain different approximation properties of many operators
[4, 5, 8, 9, 10]. Details proof of inverse results of operators Bf{g (f,x) are
discussed in this manuscript.

Lemma 1.1 ([6]). Consider V;, pm~(x),m € NU {0} has
Vnm,'y(w) Bg’,g((t_ x)m’x)

00
0

Z Sn,k,'y(w) / Unp ke ,ry (t) (t - 'T)mdt + Sn,O,’y(O)(_‘r)ma
k=1
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Then Vpoq(z) = 1, Vp14(x) = 0 and Vyo(x) = %Slliyw), and also the

following recurrence relation holds:
(n - "/"L)Vn,m-i-l,'y(x) = .T,'(l + /YLL.) (Vn,m,“/)(l) (!L‘) + 2mVn,m71,7(x)
+m(1 4+ 2y2) Vi m~ ().

Remark 1.2. For allm € N; 0 < a < 3; we have the following recursive
relation for the images of the monomials t™ under Bﬁﬁ(tm,x) in terms of
Bn(t,2); 5=0,1,2,...,m as

B =) ( ) - 004 ),
Also,
B“’E( t—ax)™ Z < ) yme kBSf(tk,x).
One can prove that, for each x € k(; 00)
Bt ) = W (2 4+m)T (2 —m+1) .
(n+ B)"T (g + 1) r (g)
+mnm_1I‘ (%—I—m—l)l“(%—m—f—l)
(n+8)mr (2+1)1 (2)
X [n(m -1)+ a(% —-m+ 1)} g™t
+am(m — )nm—2T (% +m— 2) r (% —m+ 2)
(n+ B)mT (g +1) r (g)

TR A (% o 2) 2"+ 0(n?).

X [n(m—2) 5

Lemma 1.3. If f has r*" derivative on [0,00) with f~Y = O(t"),v > 0 as
t — oo; then forr=1,2.3,... and n > v +r, we obtain

W (240)T (27 +1)

a,B _
(B ) Ui2) = s BT E + D)
ad ° (r) nt + «
X ’; Sn-‘r’yr,k,r(x)/o un—’yr,k‘+r,7(t)f ( n+ B ) dt.

2. MAIN THEOREM

Lemma 2.1 ([7]). The following equality is true.
{2 492) } D" [snpy(@)] = 32 0 (k= n) Qi (@)sn (),

2i+j5<r
4,520
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wherzl? = %, for the polynomials Q; (), which does not dependent on
n and k.

Consider Cj as the set of all continuous functions on the interval (0, c0)
having a compact support and Cjj as the class of r times continuously differ-
entiable functions with C§ C Cp.The generalized Zygmund class Liz(¢,1, a, b) =
{f : there exist a constant M such that ws(f,d) < M4, > 0}, where

wo(f,0) = ‘ su‘p6|f(a:+2h) —2f(x + h) + f(z)|
t—x|<
t€la,b]

We denoted Lip*(f, a,b) by Liz(£,1,a,b). Suppose that
={h:heCy supp h C [d,V'], where [a/,V'] C (a,b)}.
The Peetre’s K-functionals are defined as

K& f)= it 15O = W e + € {10 lerw s + 1K ewn ]

0 < & < 1, where f is r*" times continuously differentiable function with
supp f C [a/,V'].
For 0 < € < 2, Ci(¢,1,a,b) = {f : Supgcger €7 Ko(€, fra,b) < C}. We

denote C,[0,00) = {f € C[0,00) : IM > 0,u > 0 > |f(t)| < Mt"}. Then
the space (Cy[0,00), || -||,) form a norm linear space with norm | f||, =
SUPg<f<oo [ (E)[ETH.

Lemma 2.2. Let 0 < o/ < d’ <V <V < b < oo and f7) € C
with supp f C [a"V'] & f € Cj(&,1,d,b), f) € Liz(¢,1,d' V) i.e
) e Lip*(¢,d',V), where Lip*(¢,a’,V) denotes the Zygmund class sat-
isfying K, (68, f) < C16%/2.

Theorem 2.3. Let f € C,[0,00) for some p >0 and 0 < a < a1 < by <
b < co. Then for n sufficiently large, we obtain
1(B22)" (129 = FOllege < P (50,073, e, b1]) + P~
where Py = Pi(r) and Py = Pa(r, f).
Theorem 2.4. Let f € C,[0,00) and (r + 2)'" derivative of f exists at
€ (0,00), then
dwa((82)" G0) - 19@) = r66-1-5) 10
+[ry(1 4 22) + o — Ba] FOH ()
+a(1+72) f7) ().
The proof of theorem 2.3 and theorem 2.4 was discussed in [1].

Theorem 2.5. Assume that 0 < £ < 2,0 < a1 < ag < by < by < o0.
Suppose f € C,[0,00). Then (i) implies (ii), where (i) and (ii) stated as
£

a8\ _
) H (anwﬁ) (f7 ) - f(T)HC[al,bl] == O (TL 2),
(2) f™) € Lip*(¢, a2,bs),
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where Lip* (&, az,b2) denotes the Zygmund class satisfying wa(f,d, az2,b2) <
Mo,

Proof. The proof of the theorem divided in two cases.

Case I. When 0 < £ < 1. Choose a’,a”,V/,b’ > 0 such that a; < a’ <d” <
as < by < b < b < by.

Assume that h € C§° together with supp h C [a”, V"] and h(z) = 1 on the
interval [ag, bo]. For z € [@/, V'] with D = %. By linearity property, we get

(B20)” (ph2) - (O@) = D7 (B (1)) - (Fh)(a) )
= D" (B (FO(h() — b)), )

+D" (B (h(@)(f(t) - f(@),))
= J1+ Jo.

Let us consider

Wy (2,t) anm@c tn oy (1) + (1 4+ 72) 77 6(2),
k=1

4(t) being the Dirac delta function. Using the Leibnitz formula, we have
e () ()
- ()/ e 1 (55) [ (55 ) o )«
— _Z<> (Baﬂ) (f,z)

Sy maenr (55) [ (55 ) - oo

= J3+ J4.

Applying theorem 1, we have

r—1
5= =3 (5)H 0w <0 (n-f)
=0
= — (W) @) +h(@)fO(2)+ 0 (n7F),

uniformly in z € [d/,b]. By Taylor’s expansion of f(t) and h(t), we have

") (g .
ft) = Zw(t—x)’ +O(t—z)"

and
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Substituting the above expansions in J4 and using theorem 2, the Cauchy-
Schwarz inequality, we obtain

" RO () £ (g
I = Z%r!w(n—lm)

~ (T @) () £ (5 n—6/2
;(i)hw (@) +0 (w6

() (@) = hi@)f) (@) + O (n=¢/?),

uniformly in z € [d/,b]. Applying the Leibnitz formula, we obtain

J2 = ;0(:) /Ooo Wi (a, 1) 527_ {h@c) (f (iﬁ;‘) - f(x)ﬂ dt
= Z <Z> W= (@) (BY2) D (f,2) = (fh) ) (x)

1=0

= Z <T> RO (2) fO (@) — (fh) 7 (z) + O(n=4/%)

2
i=0

= 0 (n_5/2) ,

uniformly in z € [d/,b']. Finally combing the estimates of J; to Jy, we have

H (B,’j‘;vﬁ)(r) (fh,-) — (fh)(r) _0 (n_ﬁ/Q) |

Cla’ b/

Thus by lemma 3 and 4, we get (fh)") € Lip*(¢,a/,b'), which give that
) € Lip*(€,a2,bs) as h(z) = 1 on the interval [ag,by]. For the case
0 < & <1, the result is proved.

Case II. When 1 < ¢ < 2. If a],b7,a3,05 > 0 with a1 < a] < a3 < az <
by < b5 < b] <by. If 6§ >0 then 1 — 9 < 1. Therefore by Case I, we obtain
) € Lip*(1 — §,a},b%). Assume that h € C§° with h(z) = 1 on [ag, by
and supp h C (ab,b3). If xo (¢) =1 if t € [af,bf] and x2 (¢) = 0if t ¢
[af,b}], we obtain

‘ (82)" (f o) (7 O ()

Claj,b3]

<o (B2 @) (s ) - £ @) .2)|
+ o (B2 (0 () - h()) )

Cla3,b3)

H = P+ P
Clas bs]

265



266 P. Patel and V. N. Mishra

Using linearity property, Leibniz theorem, theorem 2 and the hypothesis
that (¢) holds, we get

P = |09 [ a) B — (@) B2 @

r

> (5 )@ (822)" o - 00 @)

=0 Claz b3
-l (D)@ @-uno@| o)

=0 Claz 03]
=0 (n_%> .

By the Leibnitz formula & theorem 1, we obtain
r—1 r
P = H—§0< ) @) B (f.2)
(")
+(Bx) (@O () = h(@)x2 (1)) +0(n)
Caz 5]

=||Ps+ P4||C[a;,b§} + O (n_l) .

Using theorem 2, we get

P30 ()0 @ 19w 0 (78)

=0

~(F W7 (@) + k(@) ) + 0 (n?),

uniformly in z € [a3,b3]. Applying Taylor’s expansion of f(t), we have
r ; i
@ (x) /°° ( nt + « nt + «
Py = W) (z,t -~ h —h(z)| x(t) dt
=Y | e (g ) (g ) h@)| @

o0 (r) _ £ r
(r) FOE@) - @) | (nt+a nt+a)
+/0 w, (x,t)l " z h — hiz)| x(t) dt
where ¢ € [t,z]. Using theorem 2, we obtain

O (x) [ . £+ i ta )
B= ; i!x/o W'(l% (w,t)<2+g_l~> [h<2+g>—h(x)]dt+ O (n)

P; +0 (n_l)
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uniformly in z € [a},b5]. Again using Taylor’s expansion of h € C§°, we
get

e £ [ (423 o

42 ; j r+2
h(7) (z) (nt+ « J nt + a +
+j§=l i (n—i—ﬁ —:1:) +e(t,x)(n+6—x) —h(z)| dt

where e (t,z) = 0 as t — x)

:iygyﬂ“ @/ o) CML? QH%
n Zf / (mt (z t)(Ztig—x>i+r+2 "

= P8+P9.

o nt + « k
Since / W}f% (x,1) ( niB m) dt =0V k < r. Therefore by theorem
0
2, we obtain

Py = i ( ; > h9) (z) fr ) (z) 4+ O (n™') uniformly in z € [a},b}]

=1

= (b H)(@) —h(x)f(2) + O(n7").

By some simple computation we can show that Py = O n-% uniformly

inz € [a},b5] . Applying lemma 3, the mean value theorem and Schwarz
inequality, we obtain

Qz . nt+a S+r+1
1Pl a5 (n) 7 || W (2,t)
P Clz ] QHJZQ c(lt+ya / +5
i,j> 0
™) (g) — F) ,
(726 = @) |7 ()] x (£) dt — 0(n7%),
' Clag.bs]

where ¢ is chosen in such a way that 0 < 6 < 2 — ¢ and 7 lying between ¢
and z. Now, combining the inequalities P; to Py, we obtain

- 0 (n%).

Since supp fh C (a3,b3), Therefore by lemma 3 and 4, we get (fh)(r) €
Lip*(¢, a%, b%), which gives ) e Lip* (¢, a2,b2) as h(z) = 1 on [ag, ba).
For case 1 < ¢ < 2, the proof is completed. This completes the proof of the
theorem. (]

HBW (f how) — (7 ) (2)

Clas,b5
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