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COMPUTATION OF ADRIATIC INDICES OF CERTAIN
OPERATORS OF REGULAR AND COMPLETE BIPARTITE
GRAPHS

V. LOKESHA, M. MANJUNATH, B. CHALUVARAJU, K. M. DEVENDRAIAH,
I. N. CANGUL, AND A. S. CEVIK

ABSTRACT. A topological index of a graph G is a numerical parameter related
to G which characterizes its molecular topology and used for quantitative
structure-activity relationship (QSAR) and quantitative structure-property
relationship (QSPR). Adriatic indices are bond-additive topological indices.
They are analyzed on the testing sets provided by the Inernational Academy
of Mathematical Chemistry (IAMC) and it has been shown that they have
good predictive properties in many cases. In this paper, we study the certain
adriatic indices of regular and complete bipartite graphs using some graph
operators.

1. INTRODUCTION

Let G = (V, E) be a graph. We denote the number of vertices and edges of G by
n and m, respectively. Thus [V(G)| = n and |E(G)| = m. The degree dg(v) of a
vertex v is the number of vertices adjacent to v. The edge e connecting the vertices
u and v will be denoted by e = uv.

In chemical graph theory, molecular topology and mathematical chemistry, a
topological graph theoretical index sometimes also known as the connectivity index
is a type of a molecular descriptor which is calculated by means of the molecular
graph, a graph in which the vertices correspond to the atoms and the edges to the
bonds of a molecule, of a chemical compound. That is, a topological index is a
function defined on a (molecular) graph regardless of the labeling of its vertices.
Till now, many of different topological indices have been employed in QSAR/QSPR
studies, some of which have been proved to be successful [18]. Recently, the set of
148 discrete Adriatic indices has been proposed (see [19] and for further studies of
the discrete adriatic indices (discrete adriatic indices are bond-additive topological
indices) see [20, 21]). They have shown good predictive properties in one-parametric
linear models and outperform benchmark descriptors proposed by IAMC in several
cases. Among those successful topological indices, there are four bond-additive
discrete adriatic indices, called the sum lordeg index, inverse sum lordeg index,
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misbalance lodeg index and misbalance losdeg index, which are respectively defined
to be

TG = > [\/MJF lndv}

weE(G)

W= % |

wveE(G)

V(G)= Y |lndy —Indy|

weE(G)
and

(G = > |In’dy —Indy|.
uwveE(G)

In forthcoming sections, we will obtain some results on the four of the bond-
additive discrete adriatic indices for line, subdivision, vertex-semitotal, edge-semitotal,
total, jump and para-line graphs of some standard graphs.

2. LINE GRAPHS

The line graph L(G) is the graph with vertex set V(L(G)) = E(G) whose ver-
tices correspond to the edges of G with two vertices being adjacent if and only if
the corresponding edges in GG have a vertex in common. For more details, see e.g.

[1].

Here the discrete adriatic indices of the line graph of r-regular and complete
bipartite graphs are discussed.

Theorem 1. Let G be an r-regular graph with n > 2 vertices. Then

Y[L(G)] = nr(r — 1)y/In(2r — 2)

and

BL(G)] = nr(r —1)

C4y/In(2r —2)

Proof. Let G be an r-regular graph with n > 2 vertices. Then the line graph of G

is also a 2r — 2-regular graph with % vertices and % (r — 1) edges. Then

Y[L(@)] = =y {\/ln(Qr —2)+/In(2r — 2)}
= nr(r—1)y/In2r —2)

oL(G) = "D L\/ln,(2r—2)i\/ln(27"—2):|
= 4\;%.
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Theorem 2. Let K, be a complete bipartite graph with 1 <r <s. Then
Y[L(K,s)] =rs(r+s—2)/In(r+s—2)
and

rs 1
OIL(K,s)|=—(+s—2)| ———|.
() = 5+ 8 =2)| e |
Proof. Let K, s be a complete bipartite graph with 1 < <'s. Then the line graph
of K, 5 is also an r + s — 2-regular graph with rs vertices and %rs(r + s —2) edges.
Then

T[L(K,s)] = H(r+s—2) _\/Zn(r +5—2)++/In(r +s— 2)}
= rs(r+s— 2)\/m

q)[L(KT’S)} - %(T ts— 2) \/ln(r+s—2)41r\/ln(r+s—2):|
= Zr+s-2) 4\/@}

O

By the above result with » = s, we have completed the study of the regular
bipartite graphs K, , with r > 1.

3. SUBDIVISION GRAPHS

The subdivision graph S(G) is the graph obtained from G by replacing each of
its edges by a path of length two, or equivalently, by inserting an additional vertex
into each edge of G. For more details see [2].

Here the discrete adriatic indices of the subdivision graphs of r-regular and
complete bipartite graphs are discussed.

Theorem 3. Let G be an r-regular graph with n > 2 vertices. Then

Y[S(G)] = nr[\/In(2) + v/In(r)],

"0 = | 7o ]

U[S(Q)] =nr

2
In—
r

b

and

GIS(@)] = nrlin®(2) — n*(r)|.

Proof. Let G be an r-regular graph with n > 2 vertices. Then the subdivision
graph of G has n + & vertices and nr edges. The edge partition of S(G) is as
follows:

(du,dy) where uv € E(G) (2,7)
Number of edges nr
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Then
T[S(G)] = nr {\/an - \/lnr} ,
2S@) =
= |Vt |
U[S(G)] = nr{in2—Inr
= nr ln% ,
HS(G)] = nrlin®(2) — In*(r)].

Theorem 4. Let K, 5 be a complete bipartite graph with 1 <r <s. Then

T[S(K,s)] = rs[2Vin2 + Vinr + Vins).

1 1
@[S(Kr,s>]=rs{m+m+m+m}

Y[S(K,.)] = s {|ln§| + \lnéq.

B[S(K,5)] = rs[|in*2 — In*r| + |In?2 — In?s]).

Proof. Let K, s be a complete bipartite graph with r + s vertices and |V{*| =
r | V5| = s, V(K,s) = Vi*UVS for 1 <r <s. Every vertex of V}* is incident with s
edges and every vertex of V5 is incident with r edges. Then the subdivision graph
of K, s has r + s + rs vertices and 2rs edges. The edge partition of S(K, ;) would
be as follows:

(dy,d,) where uv € E(G) (2,7) (2,s)

Number of edges rs rs
Then

T[S(K,s)] = rs[Vin2+Vinr] +rsVin2+ Vins]

= rs[2Vin2 + Vinr + Vins|,

e 1 , 1
RG] b ey R v/ revi

_ 1 1

= 7 Vet Vi vims |
U[S(Kys)] = rslln2 —Inr| +rs|in2 — Ins|

= rs||in?|+|in2||,
BIS(K, ) = rslin?2 —In?r|+rslin?2 — In?s|
= 7s[|in?2 — In?r| + |In?2 — In%s|].
O

By the above result with » = s, we completed the study of the regular bipartite
graphs K, , with r > 1.
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4. VERTEX-SEMITOTAL GRAPHS

The vertex-semitotal graph T (G) with vertex set V(G) U E(G) and edge set
E(S(G)) U E(G) is the graph obtained from G by adding a new vertex for each
edge of G and by joining each new vertex to the end vertices of the corresponding
edge. For more details see [16].

Here the discrete adriatic indices of vertex-semitotal graphs of r-regular and
complete bipartite graphs are studied.

Theorem 5. Let G be an r-reqular graph with n > 2 vertices. Then

YT(G)] = nr[Vin2+2Vin2r],

— 1 1
O[T (G)] = ”T{M+\/W+4\/1n2r ’
VLG = wrfind],
6T (G)] = nr|lln?2—In22r|.

Proof. Let G be an r-regular graph with n > 2 vertices. Then the vertex-semitotal
nr

graph of G has & + n vertices and 3&27" edges. The edge partition of T3 (G) is then
as follows:

(du,d,) where wv € E(G) (2,2r) (2r,2r)
Number of edges nr nr/2

Then we have

Y[TW(G)] = nr[VIn2 + Vin2r] + Z[Vin2r + Vin2r]
nr[Vin2 + 2v/In2r),

— 1 nr 1
e[n(G) = nr \/ln_2+\/ln2rj| T2 |:\/ln2'r+\/ln2r:|
_ 1 1
= nr \/m+\/ln2r + 4yIn2r |’
V[T (G)] = nr|ln2 —In2r| 4 5 [In2r — In2r|
= nr‘ln% ,
[T (G)] = nr|in®2 —n?2r| + % {In?2r — In*2r|

nr|in?2 — In?2r|.

Theorem 6. Let K, 5 be a complete bipartite graph with 1 <r <s. Then

T[T (K, )] = 2rs[VIn2r + Vin2s + Vin2],

1 1 1
) = 8| s Vs V)
o150 = | o + )

and

O[T (K, s)] = rs[|In?2r — In?2| + |In*2s — In?2| + |[In*2r — In*2s]].
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Proof. Let K, s be a complete bipartite graph with r + s vertices and rs edges,
where |V*| =, |V5| = s, V(K,s) = ViF UV for 1 < r < s. Every vertex of V;*
is incident with s edges and every vertex of V5 is incident with r edges. Then the
vertex-semitotal graph of K, ; has r + s + rs vertices and 3rs edges. The edge
partition of T} (K, ;) is as follows:

(du, dy) where wv € E(G) (2,2r) (2,2s) (2r,2s)

Number of edges rs rs rs
Then

YT (K,s)] = rs[Vin2r+ Vin2] 4+ rs[Vin2s + VIn2] 4+ rs[VIn2r + VIn2s]
= 2rs[Vin2r + Vin2s + Vin2],
_ 1 , 1 1

O[Ty (Krs)] = rs \/_ln2r+\/ln_2} S| g | TS {Jz—wz—}
— 1 1 1
= TS| Ui T Ve T Vareves |

U[T1(Kys)] = rs|ln2r — In2[ + rs[ln2s — In2| + rs|in2r — In2s|

= rs|[ln2r — In2| + |In2s — In2| + |In2r — In2s||,
G (K s)] = rs|ln2r — In2| + rs|in®2s — In?2| 4 rs|in?2r — In?2s|

= 7rs||In?2r — In?2| + |In?2s — In?2| + |In?2r — ln225|} .
]

By the above result with r = s, we have completed the study of regular bipartite
graphs K., with r > 2.
5. EDGE-SEMITOTAL GRAPHS

An edge-semitotal graph T5(G) with vertex set V(G) U E(G) and edge set
E(S(G@)) U E(L(G)) is the graph obtained from G by inserting a new vertex into
each edge of G and by joining with edges those pairs of these new vertices which
lie on adjacent edges of G. For more details [16].

Here the discrete adriatic indices of the edge-semitotal graph of the r-regular
and complete bipartite graphs are discussed.
Theorem 7. Let G be an r-reqular graph with n > 2 vertices. Then
Y[12(G)] = rn[Vinr + rvVin2r],
1 r—1
r™m + }
Vinr +VIn2r  4+/In2r
1
Y[ (G)] = rolin(3)]

[TL(G)] =

and
B[To(G)] = rnllnr — In*2r|.

Proof. Let G be an r-regular graph with n > 2 vertices. Then the edge-semitotal
graph of G have & + n vertices and % (r + 1) edges. The edge partition of T5(G)
is as follows:
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(du,dy) where uv € E(G) (r,2r) (2r,2r)
Number of edges rn rn(r —1)/2

Then
T[T (G)] = ra[Vinr +Vin2r] + w[vln% + Vin2r].

= rn[Vinr + rvin2r].
1 rn(r—1) { 1 }
O[IL(G)] =rn + .
I72(G)] L/lnr + \/anr} 2 Vin2r ++/In2r
B rn{ 1 L= 1 }
B Vinr +m2r  4VIn2r]
U[1(G)] = rafinr — In2r| + W\znzr ~ In2r].
= rn\ln%\.
B[To(G)] = rnllnr — In?2r| + %ﬁl)ﬂn%r — In*2r|.

= ra|ln®r — In*2r|.

Theorem 8. Let K, 5 be a complete bipartite graph with 1 <r <s. Then

Y[To(K,s)] =rs {\/WJr Vins +2y/In(r + s) + (r+s — 2)3/In(r + s)},

. 1 1 rs(r+s—2)
e A e o Rl

\IJ[T2(KT,S)] =TS {‘ln(ﬁﬂ + |ln(%)|:|
and

OTo(Kys)] =rs {\lnzr —In?(r + s)| + |In*s — In*(r + s)q

Proof. Let K, be a complete bipartite graph with r + s vertices and |V*| =
r V| =s, V(K. ) =V UV for 1 <r <s. Every vertex of V;* is incident with
s edges and every vertex of V5" is incident with r edges. Then the edge-semitotal
graph of K., would have r + s + rs vertices and sr[1 + 3(r + s)] edges. The edge
partition of T5(K, ) is as follows:

(du,dy) where uv € E(G) (ryr+ s) (s,r+s) (r+s,r+s)
Number of edges rs rs rs(r+s—2)/2
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Then

Y[T(K,s)] = r

w

}/W +/In(r + s)} +rs {\/ln(s) +/In(r + s)}
rs(r+s—2) {\/ln(r +8) +/In(r + s)}

= rs|Vinr+Vins+2y/in(r +s)+ (r+s—2) ln(r—}—s)},

o

— 1 1
CI)[Tz(KT’S)} - e _\/m+\/ln(r+s):| trs {m+\/ln(r+s)}

+ rs(r+s—2) 1
2 N Ry

1 + 1 rs(r+s—2)
_\/m+\/ln(r+s) \/ln_s+\/ln(r+s) 4vr+s |’
U[Th(K, )] = rs|inr—In(r+s)| +rslins — In(r + s)|
LD 1 (4 5) — In(r + 5)|

lIn(Z)1 + 1in(=5)1 |
oT2(Krs)] = rs|lin®r — In?(r + s)| + rs|ln®s — In?(r + s)|
—I—M\lvﬂ(r +8) — In?(r + s)|

= Trs

= r

VY

= rs||in®r —In2(r + s)| + [In%s — In?(r + 3)@
(]

By the above result with r = s, we have completed the regular bipartite graphs
K, , with r > 1.

6. TOTAL GRAPHS

The total graph of a graph G is denoted by T'(G) with vertex set V(G) U E(G)
and any two vertices of T'(G) are adjacent if and only if they are either incident or
adjacent in G. For more details, see [1].

Here the discrete adriatic indices of the total graph of the r-regular and complete
bipartite graphs are discussed.

Theorem 9. Let G be an r-regular graph with n > 2 vertices. Then
Y[T(G)] = nr(r+2)Vin2r
and
nr(r + 2)
4In2r
Proof. Let G be an r-regular graph with n > 2 vertices. Then the total graph of
G is also a 2r-regular graph with %- + nr vertices and "TTZ + nr edges. Then

oT(G)] =

Y[T(G) = (T + nr) [VIn2r + vIn2r]
= nr(r+2)Vin2r,
(I)[T(G)] - nTTQ +nr \/ln2r~1h/ln2r

nr(r+2)
4vn2r *
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Theorem 10. Let K, ;s be a complete bipartite graph with 1 <r <s. Then

Y[T(K,s)] =2rs {\/ln% +VIn2r +/In(r + s) | +rs(r + s — 2)y/In(r + s),

1 1 1
+ +
Vin2s +v2r  Vin2s+/In(r +s)  VIn2r ++/In(r +s)

B{E(, ) = s

rs(r+s—2)

* 4/In(r +s)’

2 2
\I/[T(Kr s)] = TS{ lnf +|ln 5 ‘ + |in ! H
’ r + 5 r+s
and
PT(Kr )] = rs{ In*2s — In*2r| + |In?2s — In?(r + s)| + [In?2r — In*(r + ) } .

Proof. Let K, s be a complete bipartite graph with r 4+ s vertices and [V*| =
r Vs | =s, V(K. s) = Vi UVs for 1 <r <s. Every vertex of Vi* is incident with
s edges and every vertex of V5 is incident with r edges. Then the total graph of
K, s has r 4+ s + rs vertices and %rs(r + s —2) 4 3rs edges. The edge partition of
T(K, ) is as follows:

(dy,d,) where uwv € E(G) (2s,2r) (28,7 + s) (2r,r + s) (r+s,7+s)

Number of edges rs rs rs rs(r+s—2)/2
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Then

5 &

Y[T(K,s)] = s [\/anS + vanr} +7s|VIn2s + /In(r + s)}

+rs [\/anr +/In(r + s)| 4 2t [\/ln(r +5) + /In(r + s)}

= 2rs {\/lms + VIn2r + /In(r + s)} +rs(r+s—2)y/In(r +s),

_ 1 1 1
(D[T(Kr’s)] = 7S |:\/ln2.s+\/§:| Trs l:\/ln25+ ln(r+s):| TS l:\/ln2r+ ln(r+s):|
+rs(r+s—2) 1
2 \/ln(r+s)+\/ln(r+s)
— s 1 + 1 n 1
Vin2s++v/2r \/m+\/ln(r+s) \/W+\/ln(r+s)
rs(r+s—2)
4y/In(r+s)’
U[T(K,s)] = rs|lin2s—In2r|+ rs‘ans —In(r + s)| + rs|ln2r — in(r + s)
+M In(r+s) —In(r +s)
= rs{lnf + lni—ss + ln% },
OT(K,s)] = rs|ln®2s —In2r| +rs|in?2s — In*(r + s)| + rs|In?2r — In?(r + s)

+M In%(r +s) —In(r +s)

In?2s — In?2r| + |In?2s5 — In?(r + s)| + |In?2r — In?(r + )

- o

|

By the above result with » = s, we have completed the study of regular bipartite
graphs K, , with r > 2.

7. JuMP-GRAPHS

The jump-graph J(G) of a graph G is the graph defined on E(G) where two
vertices are adjacent if and only if they are not adjacent in G. For more details,
see e.g. [8].

Theorem 11. Let G be an r-regular graph with n > 2 vertices. Then
nr
Y[J(G)] = 7(71 —2r+1)y/In(n — 2r + 1)

and

BLJ(G)] = nr(n —2r+1)

-~ 8y/In(n —2r+1)
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Proof. Let G be an r-regular graph with n > 2 vertices. Then the jump-graph of
G is also n — 2r 4 l-regular with %F vertices and % (n — 2r + 1) edges. Then

TJ(G)] = Z(n—2r+1)/In(n—2r+1)+ /In(n —2r +1)]

H(n—2r+1)y/In(n—-2r+1),

e 1
L(n—2r+1) Vin(n—2rt D ++/In(n—2r+1)
_nr(n_2ril)

8y/In(n—2r+1) "

Theorem 12. Let K, s be a complete bipartite graph with 1 <r <s. Then

Y[J(K,,)] = rs(r —1)(s — 1)[\/In(r — 1) +In(s — 1)]
and
rs(r—1)(s—1)
4y/In(r =1) +In(s — 1)
Proof. Let K, s be a complete bipartite graph with 1 < r < s. Then the jump-graph

of K, is also an (r — 1)(s — 1)-regular graph with rs vertices and % (r — 1)(s — 1)
edges. Then

DI (Ky,s)] =

YTJ(Krs) = F(r—1D(s = DVin(r—1)(s = 1) + VIn(r — 1)(s — 1)]
= rs(r—1)(s—1)[/In(r — 1) +In(s — 1)],
QK] = Fr—1(s—1) [ —

rs(r—1)(s—1)

4y/In(r—1)+In(s—1)

8. PARA-LINE GRAPHS

We now define a new concept called the para-line graph P(G) of a graph G.
Given a graph G, insert two vertices to each edge xy of G. These two vertices will
be denoted by (z,y), (v, z) where (x,y) (resp. (y,z)) is the one incident to x (resp.
y). We define the vertex set and the edge set as follows:

V(P(G)) = {(z,y) e V(G) x V(G) : zy € E(G)}

and

E(P(G)) = {((z,w), (z,2)) : (z,w), (2,2) € V(P(G)),w # 2}U{((x,9), (v, 7)) : zy € E(G)}.

The resultant graph is called the para-line graph of G. For more details, see [17].
Theorem 13. Let G be an r-regular graph with n > 2 vertices. Then
T[P(G)] = 2mrVinr

and
mr

BP(G)] =

Inr

241
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Proof. Let G be an r-regular graph with n > 2 vertices. Then the para-line graph
of GG is also an r-regular graph with 2m vertices and mr edges. Also

T[P(G) = mr[Vinr + inr]
= 2mr\/ln_r,
= i

Theorem 14. Let K, s be a complete bipartite graph with 1 <r <s. Then

Y[P(K,,)] = rs[rVinr + sVins],

1 r—1 s—1
OP(K, )] =rs 4 + ’
[P(EKrs)] {\/lm%— Vins  4VInr 4\/lns}
r
U[P(K,s)]=rs lng

and
¢P(K,s)] = rs|in’r — ln2s|.

Proof. Let K, s be a complete bipartite graph with 1 < r < s. Then the para-

graph of K, ; has 2rs vertices and “(r"’é) edges. The edge partition of P(K, ;) is
as follows:
(dy, dy,) where uv € E(G) (r,s) (r,r) (s, )
Number of edges rs rs(r—1)/2 rs(s—1)/2
Then
YIP(K, )] = rs[Vinr + Vins) + 2D inr + Vinr] + 28U [Vins + Vins|
= rs[rvinr + sVins],
(I)[P(K )] — s 1 + rs(r—1) 1 + rs(s—1) 1
s Vinr+vVins 2 Vinr+Vinr 2 Vins+Vins
_ 1 r—1 s—1
= TS| Vs T i T Wins |7
V[P(K,s)] = rs|inr—ins|+ wmzr — Inr| + @Uns — Ins|
= rs|lnz|,
GIP(K, )] = rs|in®r —in2s| + 202 — n2r| + 251025 — In?s|

= rs|lln®*r —In?s|.

O
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