Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
20 (2017), No. 4. pp. 623 - 639 http://dx.doi.org/10.17777/pjms2017.20.4.623

JANOWSKI STARLIKENESS AND CONVEXITY

KANIKA KHATTER, V. RAVICHANDRAN, AND S. SIVAPRASAD KUMAR

ABSTRACT. Certain necessary and sufficient conditions are determined
for the functions f(z) =z — > 0" , anz", an > 0, defined on the open
unit disk, to belong to various subclasses of starlike and convex func-
tions. Also discussed are certain sufficient conditions for the normalised
analytic functions f of the form (z/f(2))" =14 Y >, bnz", p € C to
belong to the class of Janowski starlike functions.
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1. INTRODUCTION AND MAIN RESULTS

This paper deals mainly with the univalent functions having negative
coeflicients. Precisely, we consider the class 7 of analytic univalent functions
onD:={z € C: |z| <1} of the form

(1) flz)=2— ianz", an > 0.
n=2

These functions are indeed from the class A of all normalized functions
analytic in D of the form f(z) = z+3 .~ , anz" and the class S of univalent
functions in A. For —1 < B < A < 1, let §*[4, B] and C[A, B] be the
subclasses of S consisting of Janowski starlike and Janowski convex functions
respectively, defined analytically as:

. . Czf'(z) 1+ Az
S'[4,B={fes: o <1+BZ}

and

2f"(z) 1+ Az
7o) 1 —i—Bz}'

When A =1-2a, (0 < a < 1)and B = —1, the above mentioned classes
reduce to the classes of starlike functions of order a denoted by S*(«a) and
convex functions of order « denoted by C(«) respectively. When A = 0
and B = 0, then S*[0,0] =: 8* and C[0,0] =: C are the familiar classes
of starlike and convex functions. A function f € § is k-uniformly convex
(k > 0), if f maps every circular arc  contained in D with center ¢, |¢| < k,
onto a convex arc. This class of such functions introduced by Kanas and
Wisniowska [6] is an extension of the class of uniformly convex functions
introduced by Goodman [5]. They showed that f is k-uniformly convex [6,
Theorem 2.2, p. 329] (see also [3] for details) if and only if f satisfies the

ClA,B]:={fes:1+
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inequality

1" 1
SICIBWAC))
(2) f'(2)

It is well-known that a function f(z) = z + > 7, an2" € A satisfying
oo g nfan| < 1 is necessarily univalent. This follows easily from the fact
that derivative of such functions has positive real part. There are other
coefficient conditions that are relevant. Theorem 1.1 extends [5, Theorem
6] to k-uniformly convex functions.

Theorem 1.1 ([6, Theorem 3.3, p. 334]). If f(z) = 2+ >~ 5 anz" satisfies
the inequality Y o> oy n(n—1)|an| < 1/(k+2) (k > 0), then f is k-uniformly
convex. The bound 1/(k + 2) cannot be replaced by a larger number.

k

A function f € A is parabolic starlike of order « if

ZJ{;S) <1-2a+Re (i{;?) .

A sufficient coefficient inequality condition for functions to be parabolic
starlike is given in the following result.

Theorem 1.2 ([1, Theorem 3.1, p. 564]). If f(z) = 2+ "5 anz™ satisfies
the inequality > 7 5(n—1)|an| < (1—a)/(2— ), then f is parabolic starlike
of order . The bound (1—a)/(2—«) cannot be replaced by a larger number.

-1

Ali et al. investigated the condition on 3 so that the inequality Y7 , n(n—
1)|an| < B implies either f is starlike or convex of some positive order. Our
primary interest is the investigation of some similar sufficient coefficient
conditions for functions to be in the classes TS*[A4, B] := T NS*[A, B], and
TC[A, B] := T NC[A, B]. We obtain here certain necessary and sufficient
conditions in terms of the coefficients a,, for the functions in the class 7 to
be in the classes TS*[A, B], TC[A, B] and TR(A, B, «). Finally, the reverse
implications are investigated for functions to be in the above mentioned
subclasses.

First, we obtain some conditions over the coefficients of the function f € T
to belong the classes TS*[A, B] and TC[A, B].

Theorem 1.3. Let -1 < B< A<1 and f €T be of the form (1).
(a) If the function f satisfies any one of the inequalities:
(1) > on(n—1)a, <2(A-B)/(1+ A-2B);
(2) Xone 2(” —1an < (A—-B)/(1+A—2B);
(3) 5, n%a, < 4(A— B)/(1+ A—2B).
(4) >oplomnan <2(A - B)/(2- 3B+ A);
then f € TS*[A, B].
(b) If the function f € T satisfies any of the following inequalities:
(1) Xpzan (n Dan < (A-B)/(1+A-2B);
(2) Xolan®an < (A B)/(2-3B+ A),
then f € TC[A, B].
The bounds are sharp.

The previous theorem gave sufficient coefficient conditions for functions
to bein TS*[A, B] or TC[A, B]. It would be interesting to find the necessary
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coefficient conditions when the functions belong to these classes. Our next
theorem gives some necessary conditions for the functions in TC[A, B].

Theorem 1.4. If the function f € TC[A, B], then:
(1) The inequality > .7 o n(n —1)a, < (A— B)/(1 — B) holds.

(2) The inequality > o0 ,n*a, < 2(A— B)/(1 + A — 2B) holds and the
bound is sharp.

As a consequence of the above theorem and the inequality 2n < n? for
n > 2, it can be seen that the inequality Y, na, < (A—B)/(1+ A—2B)
holds for the function f € TC[A, B]. Also, using the inequality 4(n—1) < n?
for n > 2, we see that the inequality > > ,(n—1)a, < (A—B)/2(1+A—-2B)
holds and both the bounds obtained here are sharp.

Next, we investigate the class R(A, B, «) (a € R) defined by

2f'(z) 1 zf"(z) 1+ Az
2 R(A, B,«) = S: 1 .
@  R4Bq {fe o e ) <o
Welet TR(A, B,a) := TNR(A, B,«). The class R(8, ) = R(1-28, -1, )
was studied earlier by [2, 8]. Note that R(4, B,0) = §*[A, B]. Our next
theorem gives a sufficient condition for the functions to belong to the classes

TR(A, B,a) N TS*[C,D] or TR(A, B,a) N TC[C, D] respectively.

Theorem 1.5. Let o > 0. If f € T satisfies the following inequality:
[ee]
> (n*a(l-B)+n(l-a)(l-B)+A—1)a, < (A- B),
n=2
then the following results hold:
(1) The function f is in the class TS*[C, D] for
A— B+ D(1— A)+2aD(1 — B)
(1-B)(1+2a) '
The bound obtained is sharp.
(2) The function f is in the class TC[C, D] for
A—B+D(a—A)+BD(1 - «)
a(l—B)

¢z

(O

The next theorem provides a sufficient coefficient inequality for the func-
tions of the form (1) to belong to the class TR(A, B, «).

Theorem 1.6. Let o € R. If the function f defined by (1) satisfies the
inequality

N 2(A - B)
®) ;”(”_1)“" (A—B)+ (1+2a)(1-B)’

then f € TR(A, B,«). The bound is sharp.

In our next result, we determine the condition on C' so that 7C[C, D] C
TR(A, B, o).



626

K. Khatter, V. Ravichandran and S. S. Kumar

Theorem 1.7. Let a > 0. If the condition
2(A-B)+(1+2a—3A+2B —2aB)D
(1-A+2a(l - B))

holds, then TC|C,D] C TR(A, B, a).

Finally, the following are the necessary conditions for the functions to
belong to the class TR(A, B, «).

Theorem 1.8. Let —1 < B < A < 1, and o € R. If the function f €
TR(A, B,«), then

1) > on(n—1)a, < (A—B)/(a(l — B)), where o > 0

(2) 3% 5(n—1)a, < v where

C<

n=2
A-B .

The result is sharp when (14 3a)B > 3a + A.
(3) Yoo, nPa, < v where

7{ (1{;;5*%, ) (A+1)>2(a+ B—aB);
- 4(A-B

The result is sharp when (A+1) < 2(a+ (1 — a)B).
(4) > na, < 2(A—B)/(A— B+ (1+2a)(1 — B)). The result is
sharp.

The functions f represented in the form:

(4) <ﬁ%>#:1+§;mya peC.

were studied in detail in [7]. Motivated by this, we determine the necessary
and sufficient conditions for the functions given by (4) to be in the class
S*[A, B]. The following theorems provide sufficient coefficient inequalities
for the normalised analytic functions f with the representation (4) to be in
the class S*[A, B|.

Theorem 1.9. Let 0 < B < A< 1 and p > —B/(A — B). If the function
f € A has the representation of the form (4) and b, satisfies any one of the
coefficient inequalities:

o (A-B)u

(A—B)u—((1+B)+ (A - B)u)|b|
21+ B)+ (A— B)u ’

(2) Y (n—1)[by| <

n=2
then f € S*[A, B].
Since n < n? for n > 1, the second part of Theorem 1.9 shows that the
inequality

> 1[bal < (A= B)u/((1+ B) + (A~ B)u)

n=1
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is sufficient for the function f to belong to S*[A, B]. Also, for n > 2, the
inequality 2(n — 1) < n(n — 1) holds and as a result, the sufficient condition
for the function f € S*[A, B], is

= 2((A=B)u—((1+B)+(A—B)u)b)
g”(”_l)w”' = 21 +B)+(A- B !

provided B > 0 and p > —B/(A — B).

Theorem 1.10. Let -1 < B< A<1,B<0and u < —-B/(A-B). If
the function f € A has the form (4) and satisfies any one of the coefficient
inequalities

- (A-=B)u—((1—B)— (A—B)ulbi|)
- (A-B)u
(2);n|bn‘ < 1-B) )

then f € S*[A, B].

The inequalities 2(n — 1) < n(n —1) (n > 2) and n < n? (n > 1) hold.
Thus, for —1 < B < A < 1, the inequalities

o (A= B)p—((1=B) = (A—B)u)|bi|
;n(n—1)|bn|§ T-5)

and

o0

2 (A-B)u

Z” |bn| < 1-B)

n=1
are sufficient for f € S*[A, B], provided B < 0 and p < —B/(A — B).
A necessary condition for the functions of the form (4) to be in the class
S*[A, B] is given in:

Theorem 1.11. If the function f € S*[A, B, then the following inequality
holds:

in2|b ‘2 < (A_B)QIU‘Q
2l = ) “2B(A- B)u— (A B

The inequality
> nfbal* < (A= B)**/((1 = B*) = 2B(A - B)u— (A— B)*)i°)
n=1

holds trivially, as a consequence of the above theorem and the fact that
n <n?forn > 1.
2. PROOFS

Firstly, we prove the following lemma which provides a necessary and
sufficient condition for function f to belong to the class TR(A, B, ).
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Lemma 2.1. Let « € R and —1 < B < A < 1. Let the function f € T
be of the form f(z) = z — Y " yanz", an, > 0. Then the function f €
TR(A, B,«) if and only if the function f satisfies the following coefficient
inequality:

o0
(5) > (n*a(l-B)+n(l-a)(l-B)+A-1)a, < A—B.

n=2
Proof. Let f € R(A, B,«). Then, by the definition of subordination there
exists a Schwartz function satisfying w(0) = 0, |w(z)| < 1, z € D such that

27(2) [ 2f"(2) 1+ Au(z)
(©) £02) (o ) =17 T+ Bu(z)
Solving for the function w, we get
2f'(2) + a2’ f"(2) = f(2)
Af(z) — Bzf'(z) — Baz*f"(2)
B Yool g an(—n —an(n —1) 4+ 1)2"
 (A-B)z+ Y2, a,(—A+ Bn+ Ban(n — 1))z"
Since Rew(z) < |w(z)| < 1, we get
Yoo g an(—n —an(n —1) 4+ 1)2"
Re { (A—B)z+ 22:?:2 an(—A+ Bn + Ban(n — 1))z"} <1

As a, € R, for z = r, the above inequality becomes

w(z) =

o0
> (n*a(l—B)+n(l-a)(1-B)+A—1a,y" < (A-B)r,
n=2
Letting » — 17, we get
oo
> (n*a(1-B)+n(l-a)(1-B)+A—1)a, <A-B.
n=2
Conversely, let the inequality (5) holds. We now have to show that f €
R(A, B, «). For this, we prove that (6) holds and therefore, it is sufficient
to show that there exists a Schwarz function w : D — I with w(0) = 0 such
that
a2 f"(z) +2f'(z) 1+ Aw(z)
f(2) - 1+ Buw(2)’

or, equivalently, it is enough to show that

laz?f"(2) + 2f'(2) = f(2)| = |Af(2) = B(az®f"(2) + 2f'(2))| < 0.

Since

(o]

aZ?f(2) + 2f'(2) :—aZnn—l )anz" —Znanz —i—Zan ,

o0

=Y (n=1)(1 +an)apz"

n=2
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we have
(M) a2 f(2) + 2f'(2) = f(2)] < D _(n—1)(1 + an)an,
n=2

and similarly,

(8)

oo

|Af(2) — B(a2?f"(2) + 2f'(2))| > (A— B) — Z(A —nB —n?Ba + nBa)ay,.

n=2

Using the inequalities (7), (8) and (5) we get
@z ["(2) + 2f'(2) = f(2)] = |Af(2) = B(az®f"(2) + 2f'(2))]|

o
gZ(n%v—l—n—na—1+A—nB—n2Ba+nBa)an—(A—B)

n

U
o

(n*a(1—=B)+n(l-a)(1-B)+A—-1)a, — (A—B) <0.

hE

[|
o

n

This completes the proof of the lemma. |

If we impose the condition o = 0 in the above lemma, we get the following
lemma:

Lemma 2.2. [4] Let -1 < B < A < 1. A function f € TS*[A, B] if and
only if it satisfies the following inequality:
o0
9) > (n(1=B)~ (1~ A)a, <A~ B.
n=2
and the function f € TC[A, B] if and only if it satisfies the inequality
(o]
(10) > n(n(l—B)—(1-A))a, < A-B.
n=2
With the help of the preceding lemma, we now prove Theorem 1.3 which
gives the sufficient condition for the function f to belong to 7S*[A, B] and
TC[A, B] respectively.

Proof of Theorem 1.3. (a) Let the function f satisfies (1). It can be easily
seen that, for n > 2, the following inequality holds:

(n—1)(1—B)+(A—B) < Mf_wmn ).
Consequently, the hypothesis yields
S ((n—1)(1 = B) + (A - B))a, SHA#_ZB S n(n—1)a, < A—B.
n=2 n=2

Therefore, by Lemma 2.2, f € TS*[A, B|.
Let us now assume that the function f satisfies (2). Then since, for n > 2,
the following inequality can be easily proved:

(n—1)1-B)+(A-B)<(1+A—2B)(n—1)

629
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Thus,
i((n 1)1 B)+ (A - B))an, <(1+ A — 2B) i(n “an, < A-B.
n=2 n=2

Thus the result holds as a consequence of Lemma 2.2.
We next suppose that (3) holds. Then, for n > 2, we have the following
inequality:
(1-2B+A4) ,

(n=1)(1-B)+ (4~ B) < — ",

Thus,

o oo
1-2B+ A
S ((n—1)(1 - B) + (A~ B))an 5(47+) S n?a, < A-B.
n=2 n=2
Hence, by (9) the function f belongs to the class TS*[A, B]. Finally, let the
function f satisfies (4). Then in order to show that f belongs to the class

TS*[A, B], we use Lemma 2.2 and the following inequality for n > 2:
(2 3B+ A)
"

We, therefore, have the desired result by Lemma 2.2 as the function f sat-
isfies

(n-=1)(1-B)+(A-B) <

i((n— (1 = B) + (A— B))a, <2=38+4) inan <A-B.

n=2 2 n=2
The functions fy: D — C and f; : D — C defined by
A-B A-B
fo(z) =2 2 and fi(z) ==z 2

1+A—2B" 2+A-3B "
satisfy the hypothesis of Lemma 2.2 and thus the functions fy and f; belong
to TS*[A, B]. The function fy shows that the bounds obtained in the first
three cases are sharp and the function f; shows that the bound in the fourth
case is sharp.

(b) For the function f satisfying the inequality (1), use the following
inequality

(n—1)(1-B)+(A-B)<(1+A—-2B)(n—1) (n>2),

to get
in((n —1)(1-B)+(A-B))a, <(1+ A-2B) in(n— 1a, < A-B.
n=2 n=2

Thus by Lemma 2.2, f € TC[A, B]. The result is sharp for the function f
given by

h@) =2= s aem "
For proving the second part, we again make use of the Lemma 2.2 and the
following inequality:

n((n—1)(1-B)+(A—B)) < (2—-3B+ A)n? (n>2).
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The above inequality immediately yields

in((n—l)(l—B)—i—(A—B))an §(2—3B+A)in2an <A-B
n=2 n=2

which in virtue of inequality (10) proves the result. The sharpness can be
seen for the function fy € TC[A, B] given by

A-B

i2+A-3B)" H

fo(z) =z —

When A =1 — « and B = 0, clearly the class TS*[A, B] reduces to the
subclass TS7, of T, and hence the the following are sufficient for f € TS%:
>y n(n — Dan < 21— a)/2—a), Y2y(n — Da, < (1-a)/(2—a),
> ana, <2(1—a)/(3—a) and Y 0%, na, <4(1—a)/(2 — a).

The first two results and the last result obtained here are same as proved
in [2, Theorem 2.1,Corollary 2.3, Theorem 2.5,], whereas the third coefficient
inequality obtained above is an improvement of the already known coefficient
bound in [2, Theorem 2.5].

When A = « and B = —a, the class TS*[A, B] reduces to the subclass
TS*[a] of T of starlike functions, and hence the following are sufficien-
t for f € TS*a]: Y o2 on(n — 1a, < 4a/(1+ 3a) Yo o(n — a, <
2a/(1+3a), Y00 s na, < 20)/(1+2a) and Y o2, n’a, < 8a/(1+ 3a).

When A = 1 — « and B = 0, clearly the class TC[A, B] reduces to the
class 7C,, where TC, is the subclass of 7 of functions convex of order o,
and hence the following are sufficient for f € TCqo: > .2 5n(n — 1)a, <
(1-a)/(2—a)and 322, n%a, < (1-a)/(3 - a).

The second coefficient inequality obtained above is an improvement of the
already known coefficient inequality as in [2, Theorem 2.5] and the first one
is same as obtained in [2, Theorem 2.1].

When A = « and B = —a, clearly the class TC[A, B] reduces to the
class TC|a], where TC[a] is the subclass of T, and hence the following are
sufficient for f € TCla]: >.00 y n(n —1)a, < 2a/(1 + 3a) and Y o2, n’a, <
a/(1+2a).

Proof of Theorem 1.4. (1) Lemma 2.2 along with the inequality

(n—1)(1=B) < (n—1)(1— B) + (A B) n>2,
immediately yields

> (n—1)(1-B)+(A- B)) A-B

;nn—langz 173) ans(lfB)'

(2) Using the following inequality:
n(l+A—-2B)<2((n—-1)(1-B)+ (A-B)) n>2,

and Lemma 2.2, we get:

2n((n—1)(1 — B) + (A — B)) 2(A - B)
Znan<2 1+A 2B) a"§(1+A—2B)'

631
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The function fy € TC[A, B| given by

A-B

Jol@) === s a9m

shows that the results are sharp. This completes the proof of the
theorem.
O

When A = 1 — « and B = 0, the class TC[A, B] reduces to the class
TCq, and hence the following coefficient inequalities follow if f € TC,:
S n(n—1)a, < 1—a, o0y na, < 2(1—a)/(2— ), Yo y(n—La, <
(1-a)/2(2—a)and Y02 yna, < (1—a)/(2 - ).

When A = o« and B = —a, clearly the class TC(A4, B) reduces to the
class TC[a], and hence we get the the following coefficient inequalities if
f € TCla]: Yrion(n — an < 20/(1+a), 307 n’a, < da/(1+3a),
Yol o(n—1)an, < a/(1+3a) and Y 7, na, < 2a/(1+ 3a).

Corollary 2.3. If f € TS*[A, B], then the following inequalities hold:
(1) % ,a, < (A-B)/(1+ A—-2B).
(2) 32, na, <2(A—B)/(1+A-2B).
(3) Ynly(n—1)a, < (A—B)/(1- B).

The bounds obtained in the first two cases are sharp.

Proof. The results follow from Theorem 1.4 and the Alexander relation be-
tween the classes TS*[A, B] and TC[A, B]. It can be directly proved by using
Lemma 2.2 by using the inequalities (1+A—2B) < (n—1)(1-B)+(A—B),
I+A-2B)n <2(n—-1)(1-B)+(A—-B)) and (1 - B)(n—1) <
(n —1)(1 = B) 4+ (A — B) respectively for n > 2. The sharpness follows by
considering the function fy(2) = 2—(A—B)/(1+A—2B)z? € TS*[A,B]. O

When A = 1—« and B = 0, the class TS*(A, B) reduces to the class TS},
and hence the following coefficient inequalities follow if f € TSE: > 07 5 a, <
1-a)/2—a), > ona, <2(1—a)/(2—a)and Y 7 ,(n—1)a, < (1-a).

When A = o and B = —a, clearly the class TS*(A4, B) reduces to the
class 7S8*[a], and hence we get the the following coefficient inequalities if
f e TSa]l: Y oloan < 2a/(1+ 3a), .02 yna, < 4a/(1+3a). and

S 5(n—1)ay < 2a/(1 + 3a).

Remark 2.4. For A =1—2a and B = —1, Theorems 1.3, 1.4 and Corollary
2.8 reduce to [2, Theorems 2.1,2.5,4.4,4.5].

Proof of Theorem 1.5. (1) In (10, Theorem 2], Silverman and Silvia proved
that S*[C, D] C S§*[A, B] (or C[C, D] C C[A, B]) if and only if the
following inequalities hold:

1-A4 1-
< c and 1+C’§1—|—A.
1-B~1-D 1+D ~ 1+B

In particular, when B = D, both of the above conditions reduce to

A > C. Consequently, if C > Cp = (A— B+ D(1 — A) +2aD(1 — B))/

((1 = B)(1 +2«)), then TS*[Co, D] C TS*[C, D]. Hence, we only
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need to prove that f € TS*[Cp, D]. This is proved by making use
the following inequality,

(11)
(n—1)(1-B)(14+2a)+(A-B) < a(1-B)n*+(1—a)(1-B)n+A-1  n>2.

Now, using the inequalities (5) and (11), it readily follows that

> ((n=1)(1 = D)+ (Co — D))an

n=2

N (A-B)(1 - D)

= n; (=10 -D)+ 1-B)1 +2a)>a"

S (n—1)(1+2a)(1 - B) + (A - B)
_Z(l—D) ><( 0= B)1+20) )an
(

ad n*(1-Bla+n(l—-B)(1—a)+A-1
<> (1-D)x ( (1- B)(1+2a) )on

(1-D)(A-B)
~ (1-B)(1+2a)
Thus by Lemma 2.2, f € TS*[Cop, D]. The function fy given by:

A-B
O Y R ey Ty p

satisfies the hypothesis of Lemma 2.1 and hence fj belongs to TR(A, B, «)
shows that the result is sharp.

(2) C>Cy=(A-—B+D(a—A)+BD(1 —«))/a(l — B), then TC[Cy, D] C
TC[C, D]. Thus, it is enough to show that f belongs to T7C[Cop, D].
The following inequality holds for n > 2:

n((n—1)a(l-B)+(A-B))<n*1-Bla+(1-B)(1-an+A-1
Now, the above inequality together with (5) shows that

=Cp—D

> n((n—1)1 - D)+ (Co— D))ay,
n=2
(A-B)(1-D)
_Z ((-na1 DHW)%
= (n—1a(l-B)+(A-DB)
_g(lD)n( (1= B )an
< %Z(nz(l —B)a+(1-B)(1—a)n+A—1)a,
n=2
(1-D)A-B)
< W—C@—D

Thus by making use of Lemma 2.2, we get that the function f belongs
to the class TC[Cy, D].

O
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Proof of Theorem 1.6. Since, for n > 2, the following inequality holds:
2(n*(1-=B)a+(1-B)(1—a)n+A—1) < (2a(1-B)—2B+A+1)n(n—1),

and using this, we see that

i(nQ(l —Bla+(1-B)(1—a)n+ A—1)a,
n=2
1 o0
< 5%}%(1-3) — 2B+ A+ 1)n(n—1)a, < A - B.

Thus, by Lemma 2.1, f € TR(A, B,a). The function fy € TR(A, B,«a)
given by
L i i ) Y e oy oy
shows that the result is sharp. O
Proof of Theorem 1.7. For C' < Cy, TC[C,D]| C TC[Cy, D]. Thus it is e-
nough to show that 7C[Cy, D] C TR(A, B, «), where Cy = (2A—2B+ (1 +
20 —=3A+2B —2aB)D)/(1 — A—2a(—1+ B)). For n > 2, the following
inequality holds:
2(n*(1—B)a+(1-B)(1-an+A—-1<AB—n)+(n—1)(1+2a)
+2B(—14 a —na)

This yields,

i(nQ(l —B)a+(1-B)(1-an+A—1)a,
n=2

- iA(3—n)+(n—1)(1+2a)+23(71+a77m)

Qp,
n=2 2
B > (n—=1)(1—-D)+(Co— D)
_nzz:z 51 D) x (1—A-2a(-1+ B))ay,
Co—D

< ﬁ x (1—A—2a(—1+ B))an

B 2(1-D)(A- B)

~ =D I—A-2aig By <1 TAT 201+ B

=A-B
Thus by Lemma 2.1 we get f € TR(A4, B, «). O
Proof of Theorem 1.8. (1) Since f € TR(A, B,«a), by Lemma 2.1 we

have
(12) ) (n*a(1-B)+n(l—a)(1—B)+A-1)a, < (A-B).

n=2

For n > 2, the following inequality holds:
(13) a(l—=B)n(n—1) < (n*a(l-=B)+n(l—a)(1-B)+A-1).
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Then, equations (12) and (13) readily give

> X (n*a(l1—=B)+n(l—-a)(1-B)+A-1)
gn(n —1a, < Z o= B) an

(A-B)
~ a(l-B)
(2) When (14 3a)B < 3a + A, then for n > 2,
(14) (1-a)(1-B)(n—-1)<n’a(l-B)+n(l—a)(1-B)+A—1.
Then, inequations (14) and (12) give

> “n?a(l-B)+n(l—a)(1-B)+A-1
(n—1a, < an

(1-a)(1-B)
<_“4-B
~ (1-a)(1-B)
When (1 4 3a)B > 3a + A, then for n > 2 the following inequality

holds,
(15) (1+A+2a—2B—2aB)(n—1) < na(l1-B)+n(l—a)(1-B)+A—1.
Using (12) and (15), we get
nZa(l — n(l—a)(l-— A-1
D e G
(A-B)
~ (1+A+2a—-2B—2aB)’
(3) When (A +1) > 2(a + B — aB), then the inequality:

a(l=B)n?<n*a(1-B)+n(l-a)1-B)+A-1 n>2

together with the inequation (12) gives

na(l-B)+n(l—a)(1-B)+A-1 (A-B)
Z”“"<Z o(1— B) S Ao B

When (A +1) < 2(a + B — aB), then for n > 2 the following
inequality holds,

(16) (14 A+ 2a—2B —2aB)n?* < 4(n*a(1-B)+n(1—a)(1-B)+A-1).
Using (12) and (16), we get

4(na1— B)+nl-a)1-B)+A-1)
Z"an<z 1+A+2a—2B - 2aB) o
(A—B)
_(1+A+2a—23—2aB).

(4) For a > 0, the inequality
(1+A+2a—2B-2aB)n<2(n?a(l-B)+n(l—a)(1-B)+A-1),
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together with (12) shows that
2(na(l-B)+n(l—a)(1-B)+ A1)
<
Z”a" Z (1+A+2a—2B—2aB) in
2(A-B)
=(1+A+2a-2B-2aB)
Sharpness follows by considering the function fy € TR[A, B, a] given by

A-B
f"('z):z_40¢(1—B)+2(1—oz)(l—B)JrA—1Z2

O

Remark 2.5. Replacing C = 1 — 2« and D = —1, Theorems 1.5-1.8 re-
duce to the results obtained in [2, Theorems 3.2, 3.3, 4.8, 4.9] for the class
TR(«, B).

Proof of theorem 1.9. In order to study the necessary and sufficient condi-

tions for the Janowski starlikeness for functions of the form (4), we need the
following lemma:

Lemma 2.6. [7, Theorem 2.1] Suppose that f € A has the representation
(4) and the coefficients b, satisfy the inequality

(17) > (n+ (A= B)u+ Bn|)|ba| < (A= B)p,

n=1
where —1 < B < A< 1. Then f € S*[A, B|.
However, if B > 0 and p > —B/(A — B), then inequality (17) reduces to:

(18) > (14 B)n+ (A= B)p)|bs| < (A— B)p.
n=1

And if B <0 and p < —B/(A — B), then equation (17) reduces to:

(19) > (1= B)n— (A= B)u)[ba| < (A— B)p.
n=1
(1) For n > 1, the following inequality holds:

(20) 1+Bn+(A-B)u<((1+B)+(A—-B)u)n
Thus using the inequality (20), we see that
D ((1+ B+ (A= B)u)lba| < ((1+ B) + (A = B)u)n|bn|
n=1

< (A-B)u.

Hence by Lemma 2.6, f € S*[A, B|.
(2) For n > 2, the following inequality holds
(21)  (1+Bn+(A-B)) < (2(1+B) + (A B))(n—1).
Using equation (21) we see that

(o)

D (14 B)n+ (A= B)u)[bnl

n=1
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= ((1+B) + (A= B)u)lbr| + ) _((1+ B)n+ (A= B)u)|by|

n=2

<((1+B) + (A= B)p)lbi| + Y _(2(1+ B) + (A = B)p)(n — 1)|by|
n=2

< (14 B)+ (A= Bybi| + 201+ B) + (4 - B)p)
(A= B)p—((1+ B) + (A - B)u)|bi|
X< 21+ B) + (A— B )S(A_B)“
Thus by using Lemma 2.6, f € S*[A, B.

O

Proof of Theorem 1.10. (1) For proving the first part of the theorem, we
observe that the following inequality can be proved easily for n > 2:

(22) (1-B)n—(A-B)p<2(1+ B)(n—1).
Therefore, using equation (22) and (19) we see that
> (1= B)n— (A~ B)u)[ba|
n=1

= (1= B) = (A= B)p)|hr[ + Y _((1 = B)n — (A = B))[bu|
n=2

<((1=B) = (A= B)p)bi|+ > 2(1 = B)(n— 1)[bn]
n=2

< ((1=B)— (A= B)u)lor| +2(1 - B)x

((A - Bp—((1-B)—(A- B)uhl))
2(1- B)

< (A= B)p.

Thus by using Lemma 2.6 f € S*[A, BJ.
(2) For the second part, we see that the following inequality holds for

n>1:
(23) (1-B)n—(A—B)u<(1- B)n.
Therefore, using equations (23) and (19) we see that
Y (1= B)n—(A=Bulba| <) (1 - B)nlb|
n=1 n=1
(A—B)u
<=0 (=)
< (A-B)p.

Hence, by Lemma 2.6 f € S*[A, BJ.
0

For A = 1—2a and B = —1, then the class TS*(A4, B) reduces to the class
TS*(v), thus it can be seen that if any of the inequalities > ", n(n—1)|b,| <
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(1= @) — aplbrly 52 o(n = Dlbal < (1= ) — aulbr])/2, Sy n?lbu] <
(1—a)por > 22 nlby| < (1 —a)p holds, then f e TS* ().

When A = 1—« and B = 0, since the class 7S*(A, B) reduces to the class
TS, thus it can be seen that if any of the inequalities > -7, n(n —1)|b,| <
(1~ ) — (1= (1 — a)lbal)y S g(n — Dlbal < (1= @) — (1= (1 -
a))|b])/2, 300, n2lby| < (1 —a)p or 0%, nlby| < (1 — @) holds, then
feTS,.

When A = « and B = —a, clearly the class 7S*(A, B) reduces to the
class TS8*[a], thus it can be seen that if any of the inequalities Y>>, n(n —
Dlbal < 200 — (1 + a) — 2ap)bu)/(1 + @), S2p(n — Dibal < 200 —
((1+a) = 2001} /2(1 + ), 352 n2lbal < 2ap1/(L+ a) or 352 nlbn| <
2au/(1 + «) holds, then f € TS*[a].

Proof of Theorem 1.11. We prove this theorem using the following lemma:

Lemma 2.7. [7, Theorem 2.4] Every function f € S*[A,B] (-1 < B <
A < 1) which has the form (4) with 0 < pu < (1 — B)/(A — B) satisfies the
coefficient inequality

S((1 = B = 20B(A~ By (A~ BR@)baP < (4~ B

n=1

For n > 1, the following inequality holds
(24)

(1-B%)—2B(A-B)u—(A-B)} ) < (1— BY)n?—2nB(A—B)u—(A-B)u

Therefore, using (24) and Lemma 2.7

(1 B*)n? —2nB(A - B)y — (A — B)
2"2“’ = Z —B?) —2B(A— B)u— (A— B =

- (A-B)*w’
S {-BY)—2B(A-Bju—(A- B’

and hence the result. O

For A =1-2a and B = —1, then the class TS*(A, B) reduces to the
class TS*(a), thus if f € TS*(a) then

2 2 - ( —a),u
Z” bl < T

When A =1 — « and B = 0, since the class TS*(A, B) reduces to the
class 7S}, thus it can be seen that if f € 7S7, then

(-
Z"2|b < 1_ ( T-(1-a)?

When A = o and B = —a, clearly the class TS*(A, B) reduces to the
class TS*[a], thus if f € TS*[a], then

o0 2,2
Zn2|bn|2 < 4o H
— T 1—a2+402u — 4a?p?

2



Janowski starlikeness and convexity 639

REFERENCES

[1] R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci.
2005, no. 4, 561-570.

[2] R. M. Ali, M. M. Nargesi and V. Ravichandran, Coefficient inequalities for starlikeness
and convexity, Tamkang J. Math. 44 (2013), no. 2, 149-162.

[3] R. M. Ali, V. Ravichandran, Uniformly convex and uniformly starlike functions,
Math. Newsletter, Ramanujan Math. Soc. 21 (2011), no. 1, pp. 16-30.

[4] M. K. Aouf, Linear combinations of regular functions of order alpha with negative
coefficients, Publ. Inst. Math. (Beograd) (N.S.) 47(61) (1990), 61-67.

[5] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991),
no. 1, 87-92.

[6] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput.
Appl. Math. 105 (1999), no. 1-2, 327-336.

[7] S. Kumar, S. Nagpal and V. Ravichandran, Coefficient inequalities for Janowski
starlikeness, Pro. Jangjeon Math. Soc., 19 (2016), no. 1, 83-100.

[8] M.-S. Liu, Y.-C. Zhu and H. M. Srivastava, Properties and characteristics of certain
subclasses of starlike functions of order 3, Math. Comput. Modelling 48 (2008), no. 3-
4, 402-419.

[9] E. P. Merkes, M. S. Robertson and W. T. Scott, On products of starlike functions,
Proc. Amer. Math. Soc. 13 (1962), 960-964.

[10] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex

functions, Canad. J. Math. 37 (1985), no. 1, 48-61.

DEPARTMENT OF APPLIED MATHEMATICS, DELHI TECHNOLOGICAL UNIVERSITY, DELHI-
110 042, INDIA
E-mail address: kanika.khatter@yahoo.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI-110 007, INDIA
E-mail address: vravi68@gmail.com

DEPARTMENT OF APPLIED MATHEMATICS, DELHI TECHNOLOGICAL UNIVERSITY, DELHI-
110 042, INDIA
E-mail address: spkumar@dce.ac.in



