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System of first order linear
(p, q)-difference equations
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Abstract In this paper, we consider a system of first order linear
(p, q)-difference equations, using (p, q)-derivative and (p, q)-integral.
We find the solutions of a system of linear (p, ¢)-difference equations
which are similar to the general linear difference equations.
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1. Introduction

In the 18th century, first formula of g-calculus is obtained by
Euler. Many mathematicians have been studied g-calculus and they
found some classical theory and several remarkable results for g-calculus.
After Jackson introduced the definition of g-integral in 1910, the sub-
ject of g-calculus has been studied by many mathematicians and physi-
cists. The applications of g-calculus has played an important role
in the area of approximation theory, number theory and theoretical
physics (see [7]-[12]).

Several researchers obtained various other generalizations of op-
erators based on g-calculus (see [3, 6, 13]). Further generalization of
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g-calculus is the post quantum calculus, denoted by (p, g)-calculus.
Recently, Mursaleen et al. applied (p, g)-calculus in approximation
theory and introduced (p, ¢)-analogue of Bernstein operators.

In 1991, R. Chakrabarti and R. Jagannathan[3] introduced the
two-parameter quantum, that is, (p,¢)-number in physics literature.
Around the same time, G. Brodimas, et al. and M. Arik, et al.
made the (p, ¢)-number (see [1, 2, 16]), independently and Wachs and
White[17] introduced the (p, g)-number in the mathematics by certain
combinatorial problems that is irrelevant to the quantum group.

Since (p, g)-number was introduced, many mathematicians have
been studied (p, g)-calculus including (p, ¢)-exponential, integration,
series and differentiation from (p, ¢)-number until the present day. Ka-
triel and Kibler[15] defined the (p, ¢)-binomial coefficient and derived
a (p,q)-binomial theorem. Smirnov and Wehrhahn[5] gave an oper-
ator, or noncommutative, version of such a (p, ¢)-binomial theorem.
Burban and Klimyk[6] studied (p, ¢)-differentiation, (p, ¢)-integration.
In, 2006, R. Jagannathan and K. S. Rao[2] made the (p, q)-extensions
of ¢g-identities. P. N. Sadjang[13] represented two appropriate polyno-
mials of the (p, ¢)-derivative and investigated some properties of these
polynomials. In addition, he discovered two (p, ¢)-Taylor formulas of
polynomials and obtained the formula of (p, ¢)-integration by part.

In [14], we have discussed methods for solving an ordinary dif-
ferential equation that involves only one dependent variable by using
(p, q)-derivative operator. Many applications, however, require the
use of two or more dependent variables, each a function of a single
independent variable. Such problems lead naturally to a system of
simultaneous ordinary differential equations.

In this paper, we consider a system of first order linear (p,q)-
difference equations. We introduce some basic notations about (p, ¢)-
calculus which is found in [1, 3, 4, 5, 6, 13, 16, 17].

Definition 1.1. For any n € C,0 < ¢ < p < 1, the (p, ¢)-number
is defined by . .
[n]p.q = £ (1.1)
p—q
Note that the (p, ¢) number is reduced to g-number, that is, limp—1[n]p,q =
[n]q for ¢ # 1 and it is clear that (p,g)-number has symmetric prop-
erty.
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N . nl ],
The (p, g)-binomial coefficients are defined by { k] = k:] '[np — k:] -,
p,q p,q P,q
0 < k < n where [n]pq! = [n]pq [n — 1]pq~~~ [1]pq forn=1,2,---,
and [0]pq! =1

Definition 1.2. Let f be a function on the set of the complex
numbers. We define the (p, ¢)-derivative of the function f as follows

Dpaf(e) = LED=TID 0z, (12)

and since Dy, o f(0) = f/(0), then it is provided that f is differentiable
at 0.

Since Dy q2" = [n]p,q2" ", if t(z) = 37_, arz” then

n—1

Dyat(z) = 3 axsalk + 1]pz”. (13)

k=0

This equation is equivalent to solve the (p, g)-difference equation in g
with known f
Dy,q9(z) = f(2).

From the Definition 1.2, we have

EBa=s (). ()

(1-%) ’
and

Dp,qf(x) = Dl,%f(px)' (1.4)

Thus, we can see that
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If the series in the right hand side of above is convergent then we
can find the previous calculus is obviously valid. Let f be an arbitrary
function. In [13], we note that the definition of (p, g)- integral is

[ 1@ =0 L (q—+x) L 1)

k
=0 P p

The operators of (p, ¢)-difference equation have the following theorem.
Theorem 1.1. The operators, D, 4, has that

(i) Derivative of a product

Dyq(f(x)g(x)) = f(p2)Dp,ag() + 9(q2) Dyp,q f ()
= g(px) Dy, f(z) + f(qx) Dp,q9(z),

(ii) Derivative of a ratio

F@)\ _ 9(qx)Dypof (x) — f(qz)Dp,qg(x)
Dra (g(x)) - (p)9(a)
_ g(px)Dp,qf(x) - f(Px)Dp,qg(x)
9(pz)g(qz) )

A general linear (p, q)-difference equations of first order is represented

Dp,qy(z) = a(z)y(qz) + b(z), (1.6)

a non homogeneous equation while the corresponding homogeneous
one has

Dyp,qy(x) = a(z)y(qz). (L.7)

We also get the solutions of the homogeneous equations in the expo-
nential functions.

The most important aim of this paper is to find solutions of sys-
tem of first order (p, ¢)-differential equations. In Section 2, we investi-
gate solutions about the system of first order linear (p, ¢)-differential
equations in various case. In Section 3, we derive solutions about the
autonomous systems of first order nonlinear (p, g)-differential equa-
tions in some case and also include each examples.
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2. The system of linear (p, ¢)-difference equations

In this section, we investigate solutions about the system of first
order linear (p, g)-differential equations in various cases. Consider a
simple case of the system of linear (p, ¢)-difference equations

Dpqyi (@) _ (a1 a1z (y1(qz)
Dy, qy2() azn a2 ) \y2(qz))’
then we have the solution as follows
y1(zx) _ 1+ a1 (1l - %)$ ai2(1 — %)ZB y1(%
v(z))  \ an(l-1Hz  14axl-1Lz) \y(l
1 0 q ail a2 y1(qx)
= 1 —_ = .
<0 1) i p)x (a21 azz) (yz(qx)

Now, we can write the general case of the system of linear (p, q)-
difference equations, that is,

Dyp,qy1 () ain a2z - aix\ [yi(qw)
Dyp,qy2() az1 a2 - G2k y2(qz)
Dyp,qyr(x) k1 Qr2  cc Gkk yr(qz)

From the above equations, we obtain a simple representation of the
system of linear (p, g)-difference equations as below

Dyp.qy(z) = A(z)y(gz) + b(z), (2.1)
where y(z) = (y1(z),- -, ys(@))", b(x) = (br(2),-- -, bi(x))" € R¥, A(z) =
(@i (@))f =1

Note that, the system is said to be non homogeneous equation and
the corresponding homogeneous equation is

Dy qy(x) = A(z)y(gz). (2.2)

From equations (2.1) and (2.2), we have following results by definitions
of (p, g)-derivative formula, respectively,
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By using the recurrence relation, we get the next theorem from
equation (2.4).

Theorem 2.1. Consider the homogeneous equations D, qy(z) =
A(z)y(gzx), then we obtain

x

y@) =y(e) ] [I+<1—§)m<§t>].

t=()~1xo

Proof. By the definition of (p,q)-derivative, the homogeneous
equations, D) qy(x) = A(x)y(qx), one has

y(z) = [I —a- %)xA(%m)] (o)

And using the recurrence relation, Theorem 2.1 is proved.

) = I] [I+ (- ;%);%m(}%m)}
; o (2.5)
= y(xo) t:(glmo {H (1-— E)tA(];t)] )
Taking xo = 0, we have
_ 9y 9yi 409yl
y(z) = y(0) [1+ (1- Hdyzac) px} (2.6)
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Corollary 2.1. If N — oo for 0 < % < 1, then (;’;)N approaches
0.

From above theorem, we can see that there exists a unique solu-
tion of homogeneous equations satisfying y(z¢) = vo , for any vector
RS Rk.

Let Y (z) be the matrix that column are constituted by the vectors
y1(x), - -, yr(z) which is a system of k vectors in R®. There exists a
unique matrix solution of homogeneous equations satisfying T'(zo) =
Vo, for any k - k matrix Vp.

Therefore, we can write

x

Y)=Vo |[] [1 +(1— %)tA(%t)} )

t=()~1zo

and for zo = 0, we have

Definition 2.1. Let {yi(z),--- ,yr(x)} be a set of k-linear inde-
pendent solutions. It is said to be a fundamental system of solutions
and the corresponding non singular matrix Y'(z) is said to be a fun-
damental matrix of the system.

Theorem 2.2. Let Y and Z be such that
Dyp,qY (z) = A(x)Y (pz)

Dy, Z(x) = —Z(qz)A(z)
Y((L’())Z(xo) =1
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then Y (z)Z(x) = I where I is the unit matrix.

Proof.

DypY (z) = A(2)Y (pz)
=Y(px)DpqZ(x) + Z(qz) DpqY (2)
= Y (pz)Z(qx)A(z) + Z(qz)A(2)Y (px)
=0

Therefore, Z(z)Y (x) is a constant and Y (z)Z(x) = 1.

In Similar method, we easily have the following theorem.

Theorem 2.3. Let Y and Z be such that
Dy,qY (z) = A(x)Y (qz)

DyqZ(z) = —Z(pz)A(z)
Y(xo)Z(CIJo) =1
then Y (z)Z(z) = I.

Theorem 2.4. The general solution of the non homogeneous
(p, q)-difference equations (2.1) is

y(z) =Y (x)

C(z)
=Y(z)C + /z Y ()Y " (£)b(t)dp,qt 27)

where C' = Y ~*(z0)y(z0).

Proof. Consider the non homogeneous equation (2.1), Dy, y(x) =
A(z)y(gz) + b(x).
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From the method of variations of constants, we have the general so-
lution under the form

y(z) =Y (z)C(x), (2.8)

where Y (z) is a fundamental matrix for the corresponding homoge-
neous system and C(z) is an unknown k-dimensional vector.

Equation (2.1) gives the system
Y (pz)Dp,qC(x) = b(x). (2.9)

The result reads

C(z) = /T Y~ (pt)b(t)d, 4t + C. (2.10)

B

Hence, from (2.8) and (2.10), we have the above result.

Also, as equivalent result, we get next theorem.

Theorem 2.5. Non homogeneous (p, q)-difference equations have
the solution,

v@) = ol zoy(en) + [ e pbdpat (211
£
where ¢(z,y) = Y (z)Y " *(y) is the (p, ¢)-state transition matrix.
And we can write convenient form in the controllability theory, as

below,

y(@) = ¢(z, o) [y@co) + [ oo, p00(0)dat| (2.12)
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Corollary 2.2. When zo = 0, the equations (2.7), (2.11), (2.12)
are expressed next forms

y(@) = 9, 0y(0) + (b~ @)z y_ (e, Zolb(-s),
and
y(x) = ¢(x,0) {@,@ +(p— q)x; 80, )b(- )

In the equation (2.11), the function

/¢xt dp,qt

is a particular solution of the equation(2.1). Therefore, the solution
of the non homogeneous (p, q)-difference equations is represented by
a sum of its particular and the general solution that derives from
homogeneous equations.

3. Autonomous systems of (p, g)-difference equations

In this section, we derive solutions about the autonomous systems
of first order non linear (p, ¢)-difference equations in some case and
also include each example.

Theorem 3.1. Let A is a constant matrix. The equations
Dy qy(x) = Ay(pz)

have its solution in series form, y(z) = >.>7  Cra™, where Cp is a
k-dimensional vector. And one gets

) AnC o
Zp 0™ = Coep q(Az).

Y
pl [n]p.q!
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Proof. Let D qy(x) = Ay(px) with A is a constant matrix. From
the definition of (p, ¢)- difference equation, we obtain
y(qz) = (I — (p — q)zA) y(px). (3.1)
And by the equation(3.1) and y(z) = >, Cnaz", we get

oo

Co(qz)" = (I - (p— q)zA) > Culpz)". (3:2)

0 n=0

M2

n

Using the method of coefficient comparison in the equation (3.2),
we have

. P—q9 k-1
Cy = P qkp AC,_1. (3.3)
And from the equation (3.3), we get next result by using recursive
calculation.

C, = H p— q A Co
_ p(?)A"’CU

[n]p,q!

Therefore, we have the solution that is (p, ¢)-exponential function,

Yp.a() = Z Chnz Z 02" = Coep,q(Az).
n=0 n=0

O

Example 3.1. Consider the (p, q)-difference equation in simple

case,
(D)= (3 3) ().

Then we can get the solution as follows

1= (1) etz = (o2,

635
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Xz = (3) ) o(6p1) = (gep,qmpx)) .

5ep,q(6p)

Theorem 3.2. Let A is a constant matrix. The equations,

Dy,qy(x) = Ay(qz),

have its solution that is represented with exponential function,
yp—l’q—l (a:) = C()ep—lyq—l (Aa:)

Proof. By the definition of (p, g)-difference equation, we have next
result.

y(x) = [I — (p — q)z4] y(%x)

S Cu@" =[-(p-qzAlY cn<§x)
n=0 n=0

And using recursive calculation, C,, is represented as follows

q(8) an
Cn_Hl— 7 q2AnCo—Co[]1_ = Coep-1 4-1(Ax).

Example 3.2. Consider the simple case of Theorem 3.2,
(Dp,qyl(w)) _ (1 3) (yl(qx))
Dyp,qy2(z) 5 3) \walqz))’
then we have the solutions with the exponential function,
(1 B _ [ ep-1,4-1(—2qx)
X1= (—1) er.a(=2qz) = (—ep_l ~1(—2qz)

(3 _ (3e,-1,4-1(6gx)
X2 = (5) ep.a(697) = <56p—1’q—1 (6qx) ) "

and
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The functions ey 4(Ax),e,-1 ,-1(Az) are (p,q)-versions and its
inverse of the usual exponential function e(Az). From Theorem 2.2,
we get the following result easily.

Theorem 3.3. Let A is a constant matrix. Then we have

ep,q(Ax)e,—1 —1(Az) = I.

Proof. By definition of (p, g)-derivative, we can see that
Dp,qep,q(Az) = Aepq(Apz),
Dy qep-1 4-1(—Azx) = —Ae,-1 ,-1(Agx)

and ep q(Axo)e,-1 ,-1(—Awo) = I for zo = 0.

Hence, we can obtain the following result from Theorem 2.2.

ep,q(Az)e,-1 ,—1(Azx) = I.
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