System of first order linear (p, q)-difference equations

K. Cho, N. S. Jung, C. S. Ryoo, K.W.Hwang*

Abstract In this paper, we consider a system of first order linear (p,q)-difference equations, using (p,q)-derivative and (p,q)-integral. We find the solutions of a system of linear (p,q)-difference equations which are similar to the general linear difference equations.

2000 Mathematics Subject Classification - $34A25,\ 23A30,\ 34B60,\ 34G10$

Key words- (p,q)-number, (p,q)-derivative, (p,q)-integral, (p,q)-difference equations, fundamental system, fundamental matrix

1. Introduction

In the 18th century, first formula of q-calculus is obtained by Euler. Many mathematicians have been studied q-calculus and they found some classical theory and several remarkable results for q-calculus. After Jackson introduced the definition of q-integral in 1910, the subject of q-calculus has been studied by many mathematicians and physicists. The applications of q-calculus has played an important role in the area of approximation theory, number theory and theoretical physics (see [7]-[12]).

Several researchers obtained various other generalizations of operators based on q-calculus (see [3, 6, 13]). Further generalization of

^{*}Corresponding Author

q-calculus is the post quantum calculus, denoted by (p,q)-calculus. Recently, Mursaleen et al. applied (p,q)-calculus in approximation theory and introduced (p,q)-analogue of Bernstein operators.

In 1991, R. Chakrabarti and R. Jagannathan[3] introduced the two-parameter quantum, that is, (p,q)-number in physics literature. Around the same time, G. Brodimas, et al. and M. Arik, et al. made the (p,q)-number (see [1,2,16]), independently and Wachs and White [17] introduced the (p,q)-number in the mathematics by certain combinatorial problems that is irrelevant to the quantum group.

Since (p,q)-number was introduced, many mathematicians have been studied (p,q)-calculus including (p,q)-exponential, integration, series and differentiation from (p,q)-number until the present day. Katriel and Kibler[15] defined the (p,q)-binomial coefficient and derived a (p,q)-binomial theorem. Smirnov and Wehrhahn[5] gave an operator, or noncommutative, version of such a (p,q)-binomial theorem. Burban and Klimyk[6] studied (p,q)-differentiation, (p,q)-integration. In, 2006, R. Jagannathan and K. S. Rao[2] made the (p,q)-extensions of q-identities. P. N. Sadjang[13] represented two appropriate polynomials of the (p,q)-derivative and investigated some properties of these polynomials. In addition, he discovered two (p,q)-Taylor formulas of polynomials and obtained the formula of (p,q)-integration by part.

In [14], we have discussed methods for solving an ordinary differential equation that involves only one dependent variable by using (p,q)-derivative operator. Many applications, however, require the use of two or more dependent variables, each a function of a single independent variable. Such problems lead naturally to a system of simultaneous ordinary differential equations.

In this paper, we consider a system of first order linear (p,q)-difference equations. We introduce some basic notations about (p,q)-calculus which is found in [1, 3, 4, 5, 6, 13, 16, 17].

Definition 1.1. For any $n \in \mathbb{C}, 0 < q < p \le 1$, the (p, q)-number is defined by

$$[n]_{p,q} = \frac{p^n - q^n}{p - q}. (1.1)$$

Note that the (p,q) number is reduced to q-number, that is, $\lim_{p\to 1} [n]_{p,q} = [n]_q$ for $q\neq 1$ and it is clear that (p,q)-number has symmetric property.

 $\begin{aligned} & \text{The } (p,q)\text{-binomial coefficients are defined by } \begin{bmatrix} n \\ k \end{bmatrix}_{p,q} = \frac{\left[n\right]_{p,q}!}{\left[k\right]_{p,q}!\left[n-k\right]_{p,q}!}, \\ & 0 \leq k \leq n \text{ where } \left[n\right]_{p,q}! = \left[n\right]_{p,q}\left[n-1\right]_{p,q} \cdots \left[1\right]_{p,q} \text{ for } n=1,2,\cdots, \\ & \text{and } \left[0\right]_{p,q}! = 1. \end{aligned}$

Definition 1.2. Let f be a function on the set of the complex numbers. We define the (p,q)-derivative of the function f as follows

$$D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p-q)x}, \quad x \neq 0,$$
(1.2)

and since $D_{p,q}f(0) = f'(0)$, then it is provided that f is differentiable at 0.

Since
$$D_{p,q}z^n = [n]_{p,q}z^{n-1}$$
, if $t(x) = \sum_{k=0}^n a_k x^k$ then
$$D_{p,q}t(x) = \sum_{k=0}^{n-1} a_{k+1}[k+1]_{p,q}x^k. \tag{1.3}$$

This equation is equivalent to solve the (p,q)-difference equation in q with known f

$$D_{p,q}g(x) = f(x).$$

From the Definition 1.2, we have

$$\frac{1 - T_{p,q}}{\left(1 - \frac{q}{p}\right)x}g(x) = f\left(\frac{1}{p}x\right), \qquad T_{p,q}g(x) = g\left(\frac{q}{p}x\right)$$

and

$$D_{p,q}f(x) = D_{1,\frac{q}{n}}f(px).$$
 (1.4)

Thus, we can see that

$$g(x) = \left(1 - \frac{q}{p}\right) \sum_{i=0}^{\infty} T_{p,q}^{i} \left\{ x f\left(\frac{1}{p}x\right) \right\}$$
$$= \left(1 - \frac{q}{p}\right) x \sum_{i=0}^{\infty} \left(\frac{q}{p}\right)^{i} f\left(\frac{q^{i}}{p^{i+1}}x\right).$$

If the series in the right hand side of above is convergent then we can find the previous calculus is obviously valid. Let f be an arbitrary function. In [13], we note that the definition of (p,q)- integral is

$$\int f(x)d_{p,q}x = (p-q)x \sum_{k=0}^{\infty} \frac{q^k}{p^{k+1}} f\left(\frac{q^k}{p^{k+1}}x\right).$$
 (1.5)

The operators of (p, q)-difference equation have the following theorem.

Theorem 1.1. The operators, $D_{p,q}$, has that

(i) Derivative of a product

$$D_{p,q}(f(x)g(x)) = f(px)D_{p,q}g(x) + g(qx)D_{p,q}f(x)$$

= $g(px)D_{p,q}f(x) + f(qx)D_{p,q}g(x)$,

(ii) Derivative of a ratio

$$D_{p,q}\left(\frac{f(x)}{g(x)}\right) = \frac{g(qx)D_{p,q}f(x) - f(qx)D_{p,q}g(x)}{g(px)g(qx)}$$
$$= \frac{g(px)D_{p,q}f(x) - f(px)D_{p,q}g(x)}{g(px)g(qx)}.$$

A general linear (p,q)-difference equations of first order is represented

$$D_{p,q}y(x) = a(x)y(qx) + b(x),$$
 (1.6)

a non homogeneous equation while the corresponding homogeneous one has

$$D_{p,q}y(x) = a(x)y(qx). (1.7)$$

We also get the solutions of the homogeneous equations in the exponential functions.

The most important aim of this paper is to find solutions of system of first order (p,q)-differential equations. In Section 2, we investigate solutions about the system of first order linear (p,q)-differential equations in various case. In Section 3, we derive solutions about the autonomous systems of first order nonlinear (p,q)-differential equations in some case and also include each examples.

2. The system of linear (p,q)-difference equations

In this section, we investigate solutions about the system of first order linear (p,q)-differential equations in various cases. Consider a simple case of the system of linear (p,q)-difference equations

$$\begin{pmatrix} D_{p,q}y_1(x) \\ D_{p,q}y_2(x) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1(qx) \\ y_2(qx) \end{pmatrix},$$

then we have the solution as follows

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = \begin{pmatrix} 1 + a_{11}(1 - \frac{q}{p})x & a_{12}(1 - \frac{q}{p})x \\ a_{21}(1 - \frac{q}{p})x & 1 + a_{22}(1 - \frac{q}{p})x \end{pmatrix} \begin{pmatrix} y_1(\frac{q}{p}x) \\ y_2(\frac{q}{p}x) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (1 - \frac{q}{p})x \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_1(qx) \\ y_2(qx) \end{pmatrix}.$$

Now, we can write the general case of the system of linear (p,q)-difference equations, that is,

$$\begin{pmatrix} D_{p,q}y_1(x) \\ D_{p,q}y_2(x) \\ \vdots \\ D_{p,q}y_k(x) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix} \begin{pmatrix} y_1(qx) \\ y_2(qx) \\ \vdots \\ y_k(qx) \end{pmatrix}.$$

From the above equations, we obtain a simple representation of the system of linear (p,q)-difference equations as below

$$D_{p,q}y(x) = A(x)y(qx) + b(x), \qquad (2.1)$$
 where $y(x) = (y_1(x), \dots, y_k(x))^t$, $b(x) = (b_1(x), \dots, b_k(x))^t \in \mathbb{R}^k$, $A(x) = (a_{i,j}(x))_{i,j=1}^k$.

Note that, the system is said to be non homogeneous equation and the corresponding homogeneous equation is

$$D_{p,q}y(x) = A(x)y(qx). (2.2)$$

From equations (2.1) and (2.2), we have following results by definitions of (p, q)-derivative formula, respectively,

$$y(x) = \left[I - (1 - \frac{q}{p})xA(\frac{1}{p}x)\right]y(\frac{q}{p}x) + x(1 - \frac{q}{p})b(\frac{1}{p}x),\tag{2.3}$$

$$y(x) = \left[I - \left(1 - \frac{q}{p}\right)xA\left(\frac{1}{p}x\right)\right]y\left(\frac{q}{p}x\right). \tag{2.4}$$

By using the recurrence relation, we get the next theorem from equation (2.4).

Theorem 2.1. Consider the homogeneous equations $D_{p,q}y(x) = A(x)y(qx)$, then we obtain

$$y(x) = y(x_0) \prod_{t=(\frac{q}{p})^{-1}x_0}^{x} \left[I + (1 - \frac{q}{p})tA(\frac{1}{p}t) \right].$$

Proof. By the definition of (p,q)-derivative, the homogeneous equations, $D_{p,q}y(x)=A(x)y(qx)$, one has

$$y(x) = \left[I - (1 - \frac{q}{p})xA(\frac{1}{p}x)\right]y(\frac{q}{p}x).$$

And using the recurrence relation, Theorem 2.1 is proved.

$$y(x) = y((\frac{q}{p})^{N}x) \prod_{i=0}^{N-1} \left[I + (1 - \frac{q}{p}) \frac{q^{i}}{p^{i}} x A(\frac{q^{i}}{p^{i+1}} x) \right]$$

$$= y(x_{0}) \prod_{t=(\frac{q}{p})^{-1}x_{0}}^{x} \left[I + (1 - \frac{q}{p}) t A(\frac{1}{p} t) \right].$$
(2.5)

Taking $x_0 = 0$, we have

$$y(x) = y(0) \left[I + (1 - \frac{q}{p})(\frac{q}{p})^i x A(\frac{q}{p})^i \frac{1}{p} x \right]$$
 (2.6)

Corollary 2.1. If $N \to \infty$ for $0 < \frac{q}{p} < 1$, then $(\frac{q}{p})^N$ approaches 0.

$$y(x) = y(0) \prod_{i=0}^{\infty} \left[I + (1 - \frac{q}{p}) (\frac{q}{p})^i x A ((\frac{q}{p})^i \frac{1}{p} x) \right].$$

From above theorem, we can see that there exists a unique solution of homogeneous equations satisfying $y(x_0) = v_0$, for any vector $v_0 \in \mathbb{R}^k$.

Let Y(x) be the matrix that column are constituted by the vectors $y_1(x), \dots, y_k(x)$ which is a system of k vectors in \mathbb{R}^k . There exists a unique matrix solution of homogeneous equations satisfying $T(x_0) = V_0$, for any $k \cdot k$ matrix V_0 .

Therefore, we can write

$$Y(x) = V_0 \prod_{t = (\frac{q}{p})^{-1} x_0}^{x} \left[I + (1 - \frac{q}{p}) t A(\frac{1}{p}t) \right],$$

and for $x_0 = 0$, we have

$$Y(x) = V_0 \prod_{i=0}^{\infty} \left[I + (1 - \frac{q}{p}) (\frac{q}{p})^i x A ((\frac{q}{p})^i \frac{1}{p} x) \right]$$

Definition 2.1. Let $\{y_1(x), \dots, y_k(x)\}$ be a set of k-linear independent solutions. It is said to be a fundamental system of solutions and the corresponding non singular matrix Y(x) is said to be a fundamental matrix of the system.

Theorem 2.2. Let Y and Z be such that

$$D_{p,q}Y(x) = A(x)Y(px)$$
$$D_{p,q}Z(x) = -Z(qx)A(x)$$
$$Y(x_0)Z(x_0) = I$$

then Y(x)Z(x) = I where I is the unit matrix.

Proof.

$$D_{p,q}Y(x) = A(x)Y(px)$$

$$= Y(px)D_{p,q}Z(x) + Z(qx)D_{p,q}Y(x)$$

$$= -Y(px)Z(qx)A(x) + Z(qx)A(x)Y(px)$$

$$= 0$$

Therefore, Z(x)Y(x) is a constant and Y(x)Z(x) = I.

In Similar method, we easily have the following theorem.

Theorem 2.3. Let Y and Z be such that

$$D_{p,q}Y(x) = A(x)Y(qx)$$
$$D_{p,q}Z(x) = -Z(px)A(x)$$
$$Y(x_0)Z(x_0) = I$$

then Y(x)Z(x) = I.

Theorem 2.4. The general solution of the non homogeneous (p,q)-difference equations (2.1) is

$$y(x) = Y(x)C(x)$$

$$= Y(x)C + \int_{x_0}^x Y(x)Y^{-1}(t)b(t)d_{p,q}t$$
(2.7)

where $C = Y^{-1}(x_0)y(x_0)$.

Proof. Consider the non homogeneous equation (2.1), $D_{p,q}y(x) = A(x)y(qx) + b(x)$.

From the method of variations of constants, we have the general solution under the form

$$y(x) = Y(x)C(x), (2.8)$$

where Y(x) is a fundamental matrix for the corresponding homogeneous system and C(x) is an unknown k-dimensional vector.

Equation (2.1) gives the system

$$Y(px)D_{p,q}C(x) = b(x). (2.9)$$

The result reads

$$C(x) = \int_{x_0}^{x} Y^{-1}(pt)b(t)d_{p,q}t + C.$$
 (2.10)

Hence, from (2.8) and (2.10), we have the above result.

Also, as equivalent result, we get next theorem.

Theorem 2.5. Non homogeneous (p,q)-difference equations have the solution,

$$y(x) = \phi(x, x_0)y(x_0) + \int_{x_0}^x \phi(x, pt)b(t)d_{p,q}t$$
 (2.11)

where $\phi(x,y) = Y(x)Y^{-1}(y)$ is the (p,q)-state transition matrix.

And we can write convenient form in the controllability theory, as below,

$$y(x) = \phi(x, x_0) \left[y(x_0) + \int_{x_0}^x \phi(x_0, pt) b(t) d_{p,q} t \right].$$
 (2.12)

Corollary 2.2. When $x_0 = 0$, the equations (2.7), (2.11), (2.12) are expressed next forms

$$y(x) = Y(x)C + (p-q)x\sum_{i=0}^{\infty} \frac{q^i}{p^{i+1}}Y(x)Y^{-1}(\frac{q^i}{p^i}x)b(\frac{q^i}{p^{i+1}}x),$$

$$y(x) = \phi(x,0)y(0) + (p-q)x \sum_{i=0}^{\infty} \frac{q^i}{p^{i+1}} \phi(x, \frac{q^i}{p^i}x)b(\frac{q^i}{p^{i+1}}x),$$

and

$$y(x) = \phi(x,0) \left[(y(0) + (p-q)x \sum_{i=0}^{\infty} \frac{q^i}{p^{i+1}} \phi(0, \frac{q^i}{p^i} x) b(\frac{q^i}{p^{i+1}} x) \right].$$

In the equation (2.11), the function

$$\int_{x_0}^{x} \phi(x,t)b(t)d_{p,q}t$$

is a particular solution of the equation (2.1). Therefore, the solution of the non homogeneous (p,q)-difference equations is represented by a sum of its particular and the general solution that derives from homogeneous equations.

3. Autonomous systems of (p, q)-difference equations

In this section, we derive solutions about the autonomous systems of first order non linear (p,q)-difference equations in some case and also include each example.

Theorem 3.1. Let A is a constant matrix. The equations

$$D_{p,q}y(x) = Ay(px)$$

have its solution in series form, $y(x) = \sum_{n=0}^{\infty} C_n x^n$, where C_n is a k-dimensional vector. And one gets

$$y_{p,q}(x) = \sum_{n=0}^{\infty} \frac{p^{\binom{n}{2}} A^n C_0}{[n]_{p,q}!} x^n = C_0 e_{p,q}(Ax).$$

Proof. Let $D_{p,q}y(x) = Ay(px)$ with A is a constant matrix. From the definition of (p,q)- difference equation, we obtain

$$y(qx) = (I - (p - q)xA)y(px).$$
 (3.1)

And by the equation (3.1) and $y(x) = \sum_{n=0}^{\infty} C_n x^n$, we get

$$\sum_{n=0}^{\infty} C_n(qx)^n = (I - (p-q)xA) \sum_{n=0}^{\infty} C_n(px)^n.$$
 (3.2)

Using the method of coefficient comparison in the equation (3.2), we have

$$C_k = \frac{p - q}{p^k - q^k} p^{k-1} A C_{n-1}. \tag{3.3}$$

And from the equation (3.3), we get next result by using recursive calculation.

$$C_n = \prod_{k=1}^n \frac{p-q}{p^k - q^k} p^{\binom{n}{2}} A^n C_0$$
$$= \frac{p^{\binom{n}{2}} A^n C_0}{[n]_{p,q}!}.$$

Therefore, we have the solution that is (p, q)-exponential function,

$$y_{p,q}(x) = \sum_{n=0}^{\infty} C_n x^n = \sum_{n=0}^{\infty} \frac{p^{\binom{n}{2}} A^n C_0}{[n]_{p,q}!} x^n = C_0 e_{p,q}(Ax).$$

Example 3.1. Consider the (p,q)-difference equation in simple case,

$$\begin{pmatrix} D_{p,q}y_1(x) \\ D_{p,q}y_2(x) \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} y_1(px) \\ y_2(px) \end{pmatrix}.$$

Then we can get the solution as follows

$$X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e_{p,q}(-2px) = \begin{pmatrix} e_{p,q}(-2px) \\ -e_{p,q}(-2px) \end{pmatrix},$$

$$X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e_{p,q}(6px) = \begin{pmatrix} 3e_{p,q}(6px) \\ 5e_{p,q}(6px) \end{pmatrix}.$$

Theorem 3.2. Let A is a constant matrix. The equations,

$$D_{p,q}y(x) = Ay(qx),$$

have its solution that is represented with exponential function,

$$y_{p^{-1},q^{-1}}(x) = C_0 e_{p^{-1},q^{-1}}(Ax).$$

Proof. By the definition of (p,q)-difference equation, we have next result.

$$y(x) = [I - (p - q)xA] y(\frac{q}{p}x),$$

$$\sum_{n=0}^{\infty} C_n(x)^n = [I - (p-q)xA] \sum_{n=0}^{\infty} C_n(\frac{q}{p}x)^n$$

And using recursive calculation, C_n is represented as follows

$$C_n = \prod_{k=1}^n \frac{1 - \frac{q}{p}}{1 - (\frac{q}{p})^k} q^{\binom{n}{2}} A^n C_0 = C_0 \frac{q^{\binom{n}{2}} A^n}{[n]_{1,\frac{q}{p}}!} = C_0 e_{p^{-1},q^{-1}}(Ax).$$

Example 3.2. Consider the simple case of Theorem 3.2,

$$\begin{pmatrix} D_{p,q}y_1(x) \\ D_{p,q}y_2(x) \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} y_1(qx) \\ y_2(qx) \end{pmatrix},$$

then we have the solutions with the exponential function,

$$X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e_{p,q}(-2qx) = \begin{pmatrix} e_{p-1,q-1}(-2qx) \\ -e_{p-1,q-1}(-2qx) \end{pmatrix},$$

and

$$X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e_{p,q}(6qx) = \begin{pmatrix} 3e_{p^{-1},q^{-1}}(6qx) \\ 5e_{p^{-1},q^{-1}}(6qx) \end{pmatrix}.$$

The functions $e_{p,q}(Ax)$, $e_{p^{-1},q^{-1}}(Ax)$ are (p,q)-versions and its inverse of the usual exponential function e(Ax). From Theorem 2.2, we get the following result easily.

Theorem 3.3. Let A is a constant matrix. Then we have

$$e_{p,q}(Ax)e_{p^{-1},q^{-1}}(Ax) = I.$$

Proof. By definition of (p,q)-derivative, we can see that

$$D_{p,q}e_{p,q}(Ax) = Ae_{p,q}(Apx),$$

$$D_{p,q}e_{p-1,q-1}(-Ax) = -Ae_{p-1,q-1}(Aqx)$$

and $e_{p,q}(Ax_0)e_{p^{-1},q^{-1}}(-Ax_0) = I$ for $x_0 = 0$.

Hence, we can obtain the following result from Theorem 2.2.

$$e_{p,q}(Ax)e_{p^{-1},q^{-1}}(Ax) = I.$$

Kook Cho,

Graduate School of International Studies,

Dong-A University, Pusan 49236, Republic of Korea

E-mail: kcho@dau.ac.kr

Nam-Soon Jung,

Department of Mathematics,

Hannam University, Daejeon 306-791, Republic of Korea

E-mail: soonjn@gmail.com

Cheon-Seoung Ryoo,

Department of Mathematics,

Hannam University, Daejeon 306-791, Republic of Korea

E-mail: ryoocs@hnu.kr

Kyung-Won Hwang, Department of Mathematics, Dong-A University, Pusan 49315, Republic of Korea E-mail: khwang@dau.ac.kr

Acknowledgement.

Kyung-Won Hwang is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0025252).

References

- [1] G. Brodimas, A. Jannussis, R. Mignani, Two-parameter quantum groups, Universita di Roma Preprint, Nr. 820 (1991).
- [2] R. Jagannathan, K. S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associasted generalized hypergeometric series, arXiv:math/0602613[math.NT].
- [3] R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A:Math. Gen., 24 (1991), L711.
- [4] R. B. Corcino, On P, Q-Binomial coefficients, Electron. J. Combin. Number Theory, 8 (2008), A29.
- [5] Yu. F. Smirnov and R. F. Wehrhahn, The Clebsch-Gordan coecients for the twoparameter quantum algebra SUp,q(2) in the Lowdin-Shapiro approach, J. Phys. A: Math. Gen. 25 (1992) 5563-5576.
- [6] M. Burban and A. U. Klimyk, P,Q-dierentiation, P,Q-integration and P,Qhypergeometric functions related to quantum groups, Integral Transforms and Special Functions 2 (1994) 15-36.
- [7] H. Gauchman, Integral Inequalities in q-Calculus, MIRAMARE-TRIESTE, Computers and Mathematics with Applications, 47 (2004), 281-300.
- [8] H. F. Jackson, q-Difference equations, Am. J. Math, 32 (1910), 305-314.

- [9] W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Mathematica, (1933).
- [10] G. Bangerezako, An introduction to q-difference equations, MIRAMARE-TRIESTE, (2011), https://www.uclouvain.be/cps/ucl/doc/math/documents/RAPSEM354.
- [11] R. D. Carmichael, The general theory of linear q-qifference equations, Am. J. Math, 34 (1912), 147-168.
- [12] T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Am. J. Math, 37 (1915), 439-444.
- [13] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934[math.QA].
- [14] K. H. Roh, C. S. Ryoo, H. Y. Lee, Y. R. Kim, J. Y. Kang, On the (p,q)-difference equations of first order, submitted for publication.
- [15] J. Katriel and M. Kibler, Normal ordering for deformed boson operators and operatorvalued deformed Stirling numbers, J. Phys. A: Math. Gen. 25 (1992) 2683-2691.
- [16] M. Arik, E. Demircan, T. Turgut, L. Ekinci, M. Mungan, Fibonacci oscillators, Z. Phys. C:particles and Fields, 55 (1992), 89-95.
- [17] M. Wachs, D. White, p,q-Stirling numbers and set partition statistics, J. Combin. Theory A, 56 (1991), 27-46.