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DEGENERATE CHANGHEE NUMBERS AND POLYNOMIALS
OF THE SECOND KIND

GWAN-WOO JANG, DAE SAN KIM, AND TAEKYUN KIM

ABSTRACT. In this paper, we consider the degenerate Changhee numbers
and polynomials of the second kind which are different from the previously
introduced degenerate Changhee numbers and polynomials by Kwon-Kim-
Seo (see [11]). We investigate some interesting identities and properties for
these numbers and polynomials. In addition, we give some new relations
between the degenerate Changhee polynomials of the second kind and the
Carlitz’s degenerate Euler polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q, and C,
will denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of an algebraic closure of Q,. The p-adic norm |- |, is normalized by
Iplp = 11—7. Let C(Z,) be the space of continuous functions on Z,. For f € C(Z,),
the fermionic p-adic integral on Z,, is defined by Kim as

pN -1

1) = [ f@dua@ = Jim 3 f@huae+rVZ,)

(1.1)

N—o00

= lim i fl2)(=1)*, (see [8,19]).
=0

From (1.1), we note that

() + (1P =2 310 (), (see [8,18,19),  (1.2)
a=0
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where f,(x) = f(z +n), (n € N). It is well known that the Euler polynomials
are defined by the generating function

et T1¢ Z En( — (see [1 — 20]). (1.3)

n=0

When z =0, E,, = E,(0) are called the Euler numbers.
In [2,3], L. Carlitz considered the degenerate Euler polynomials given by the
generating function

2

m 14+ )\f X = Zgn A /\ S R) (14)

When z =0, &, » = £,.1(0) are called the degenerate Euler numbers. From
(1.4), we easily note that

2
1 = — x
Z i Ena(@ n' A—>0(1+)\t)%+1( A6

Thus, we have

;ig}) Enn(z) = E,(x), (n>0), (see[2]).

As is well known, the Changhee polynomials are defined by the generating
function

2
t+21+t nzoc*h,l _, (see [7,9]). (1.5)

When z = 0, Ch,, = Ch,(0), (n > 0), are called the Changhee numbers.
From (1.2), we note that

/Zp(l + )" du_y (y) = 557 2 c(1+)” ZCh ) (1.6)
Thus, by (1.6), we get
[ @ madnav) = Chafa), (02 0), (s 1) (L7)

where (z)g =1, (), =2(xz —1)---(x —n+1), (n >1).
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It is not difficult to show that

2 > tn
(m—i—y)td _ xt _ s
/ ) = e = S By (18)
By (1.8), we get
/ (@ + 9)"dp1(y) = En(2), (n>0), (sce [6,7,8,18,19]). (1.9)
Jz,
The Stirling numbers of the first kind are defined by
(x)n = Z Si(n,D)x', (n>0), (see [l —20]), (1.10)
1=0
and those of the second kind are given by
2" =" S (n, ) (@), (n>0), (see[l,4,5,7,18)). (1.11)
1=0
From (1.6) and (1.8), we note that
Chu(z) =Y Ei(2)S1(n,1), (1.12)
1=0

and
n
En(z) =Y Chy(2)S2(n,1), (n>0), (see [7)).
1=0
Recently, the degenerate Changhee polynomials are introduced by Kwon-Kim-
Seo as

2\

1\x e tn
——— _(1+log(1+M)%)" = N
2)\+10g(1+/\t)( +log(1+ 1) %)" = Chyx(2) (1.13)

n=0

When z =0, Ch}, \ = Chy, ,(0) are called the degenerate Changhee numbers
(see [11]). '

Note that limy—,o Chy, (z) = Chy(z), (n > 0).

Recently, many researchers have studied Changhee numbers and polynomials
(see [1-20]). In this paper, we consider the degenerate Changhee numbers and
polynomials of the second kind which are different from the previous introduced
degenerate Changhee numbers and polynomials by Kwon-Kim-Seo (see [11]).
We give some new and interesting identities and properties for these numbers
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and polynomials. In addition, we investigate some relations between the degen-
erate Changhee polynomials of the second kind and Carlitz’s degenerate Euler

polynomials.

2. Degenerate Changhee numbers and polynomials of the second
kind

From (1.2), we note that

z+y 2

/ (L4 Aog(1+1)) * du-1(y) = (1+ Alog(1 + 1)) %,
Zp 14 (1+ Alog(1 +1))

>

(2.1)

where A\ € C, with ||, < 1. Now, we define the degenerate Changhee polyno-
mials of the second kind by

2 . i
l+(1+)\log(l—|—t)) ( + g(1+ )) Z () (2.2)

Thus, by (2.1), we get

>

aty e zty . }
[ (e Fans =3 [ ( P Jauoa )N (log(1-+1)

=0

e’} n z+y m
=S (s [ (7 )rdnawn )
n=0 \1=0 Zp l n!

(2.3)

Comparing the coefficients on both sides of (2.2) and (2.3), we have

z+y

S s [ (7] )tnaN = Chste) wz0. )
=0 P

The A-analogue of falling factorial sequence is given by
(@)pr=x(x = A)---(z—(n—1)N), (n>1), (x)or = 1. (2.5)

Thus, by (2.4) and (2.5), we get

> 8in) [ @+ phadior) = Chua@) (1201 (20
1=0 Zp
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Theorem 2.1. Forn > 0, we have

n
> | @t puadia@Sind) = Chupo).
1=0 /Zp
It is not difficult to show that

2
(1+/\t)A +1

_ Z gn )\ t’n/

n=0

/Z<1+At> g (y) = (1+ A%

From (2.7), we note that
[ @+ nadiorv) = En(o). (0> 0)
Zp

Thus, from Theorem 2.1 and (2.8), we obtain the following theorem.

Theorem 2.2. For n > 0, we have
n
> Si(n,DEA(x) = Chy ().
By replacing ¢ by e! — 1 in (2.2), we get

ZcmnA 671)”@:

m=0

2

S E
(1+At)%+1< ik

On the other hand,

ZchmA e—l)

=2 Chnm,
m=0 n=m
Z: (Z Chu A () S2(n m)) 2_"'

m=0

Therefore, by (2.9) and (2.10), we obtain the following theorem.

Theorem 2.3. Forn > 0, we have

Z(JhmA )Sa(n,m).

(2.7)

(2.8)

(2.10)
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When z = 0, Chy a(z) = Chy 2(0), (n > 0), are called the degenerate
Changhee numbers of the second kind.
From (2.2), we note that

st Tk 2 z
Chy,, = (1 4+ Alog(1+1¢))*
; A(m)”! 1+(1+/\log(1—|—t))x( + Mog(1 1)
o) l o0 x
- (ZC}”A@ (Z (%))\m(log(l—i—t))m)
1=0 m=0
o] 1 00 e k
= (Z Chl,A%) (Z(x)m,,\ > Sl(k»m)%> (2.11)
1=0 m=0 k=m :
oo 4 e k tk
= ZChL)‘ﬁ Z Z(x)m,ksl(kvm) %l
1= k=0 \m=0

0
0 n k n
= Z (Z > (Z (@), 251 (K, m)Chi, - kA) t—,

k=0 m=0

By comparing the coefficients on both sides of (2.11), we obtain the following
theorem.

Theorem 2.4. For n > 0, we have

hn (@ ii( > JmAS1(k, m)Chy g x-

k=0 m=0
By (1.2) , we easily get
[ et Ddpa@) + [ 1@ @) = 26(0). (2.12)

Thus, by (2.12), we get

/Z (1+ Alog(1 + t))%d,u_l(m) + / (1+ Alog(1 + t))§d,u_1(m) =2. (2.13)

Zp
From (2.2) and (2.13), we have

2
1+ (14 Xlog(1 + 1))

1+ Mog(1+1)* + 2 _o.
( g(1+1))

1+(1+)\log(1+t))%

>

(2.14)
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From (2.2) and (2.14), we have
o0 tn

n=0
Comparing the coefficients on both sides of (2.15), we obtain the following
theorem.

Theorem 2.5. Forn > 0, we have

2, ifn=0

ChyA(1) + Chy y =
e A

By Theorem 2.5, we easily get
1 1
Cho’)\ =1, Chlﬁ)\ = —5, Chg)\ = 5(1 +/\),~-~ .
For d € N with d = 1 (mod 2), by (1.2) we have

/f + d)dp_r (@ /f Vi (@ _22 (2.16)

a=0

Let us take f(z) = (1 + Alog(1 + t))} Then by (2.16), we get

é (1+ Aog(1+ 1)) %d//,,l(a:)

d—1

2 a
BT ET ;(—1)“(1 + Mog(1+ 1)) * 217
d—

2
=2 (- 7
a=0 1+(1—0—’\dlog(1+t))*
y (2.7), we easily get

>_\

(1+ Adlog(1+ 1)) > 7.

2

dg = a\ d m
- (1+ 3dlog(1+ 1)) = Epma (5) — (log(1+1))
1+ (1+ 4dlog(l+1)* mz::() ’ (d) m!

oo n m
=Y (Z dme,, A&(n,m)) —.
m=0 N n!
(2.18)
From (2.17) and (2.18), we note that
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>ls

> tn
> Chpr— :/ (1+ Mog(1 + 1))’
0 n. 7

P

d—1 N
_ Z (Z dmz ) 5m A&(n,m)) ;—'

d ,1(1’)
(2.19)

n=0 \m=0 a=0
Therefore, by (2.19), we obtain the following theorem.

Theorem 2.6. Forn >0,d € N withd=1 (mod 2), we have
d—1

ChM_deZ 1)?€,, 351 (n,m).

m=0 a=0
Now, we observe that

2 eti 2(1+ Alog(1+1)%
(1+Alog(1+1)) > + ( og( ) T

1+ (1+ Alog(1 + 1)) 1+ (1+ Mog(1+1))> (2.20)

=2(1+ Mog(1 + 1‘))

Thus, by (2.2) and (2.20), we get

>

/|‘<

oo

Z (Chya(z+ 1)+ Chy a(x)) t—n‘ =2 Z(m)m_A%(log(l +)"

n=0 m=0

(2.21)

n

—Z(QZ mslnm)> =

n=0
Thus, by (2.21), we obtain the following theorem.

Theorem 2.7. Forn > 0, we have
Chp (x4 1) + Chy A (x _22 )maS1 (1, m).
From (2.16), we have

2

(1+)\log(1+t)>§+ 2
1+ (1+ Aog(1+1)) 1+ (14 Alog(1+1))
d—1

>
P

(2.22)
— 23 (1) (1 + Aog(1 + 1)) %,
a=0
where d € N with d =1 (mod 2).
By (2.2) and (2.22), we get
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s n d—1 oo
D (Chu(d) +Chy, *)t_w =2 (-1)" > () log(1+t))
n=0 a=0 m=0
d—1 00 n N
=2y (1)) (Z( )m,Asl(n,m)> ’;—' (2.23)
a=0 n=0 \m=0 .
- Z (22 D (@mrS1(nm) (= 1>~) -

Therefore, by (2.23), we obtain the following theorem.

Theorem 2.8. Forn >0, d € N withd=1 (mod 2), we have

Chy, A (d) +ChA72ZZ ) aS1(n, m)(—1)%.

=0 m=0

Now, we consider the higher-order degenerate Changhee polynomials of the
second kind which are derived from the multivariate fermionic p-adic integral on
L.

For r € N, we define the higher-order degenerate Changhee polynomials of
the second kind which are given by the multivariate fermionic p-adic integral on
Z,, as follows:

ztag+-Fap

/. / (1 + Aog(1 + t)) x dp_1(x1) - dp_1(x,)
Jz, Jz,

r (2.24)

- n
= 2 (1+ Xlog(1+1))* ZC’hIM t .

1+ (14 Mlog(1 +1))

P

When z = 0, Ch,E:z\ = Chfz )/\(0) are called the higher-order degenerate
Changhee numbers of the second kind.
From (2.24), we note that
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wtzy oty

(1+ Alog(1+1)) Y dpi () - dpea ()

.
ST

\

m

1 m
/ 14 A T+ T)madp—(z1) - (Z/L_l(:rr)ﬁ(log(l +1))

n

(Z / / 1+ + @ T)moadp— (@) - 'du_l(xT)Sl(n,m)> :l—'

(2:25)

”M8 ||F%8 ||M8

It is easy to show that

x4 taptx
/Z /Z (L+X)" > du_q(z1) - -dp_1(zy)
PR b/ (2.26)

oo

_ 2 ' z _ ) (2
_ ((1+At)%+1) (1+At) X%SM( )

tn

where é',,(:i (z) are the Carlitz’s degenerate Euler polynomials of order r.
Thus, by (2.26), we get

[ @t amadios @) - dua(en) = E5 @), (m > 0),

e (2.27)

Therefore, by (2.24), (2.25) and (2.27), we obtain the following theorem.
Theorem 2.9. Forn > 0, we have

Ch{\ () Z £ (2)S1(n,m), (r € N).

m=0

By replacing ¢ by €' — 1 in (2.24), we get

2t dorts > et —1)ym
m=0 ’
00 n m
:Z<20hnm Sgnm)> —
n=0 \m=0 n

(2.28)
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Thus, by comparing the coefficients on both sides of (2.28) and (2.26),

obtain the following theorem.

Theorem 2.10. For n >0, we have
£ () Z ch") (2)Sa(n, m).

The degenerate Stirling numbers of the second kind are defined by Kim as

((1 F A — Z Saa(m,n)—,  (see [10]). (2.29)
Here the left hand side of (2.29) is given by

1 1 n_ L/ Liogi4an "
n((1+)\t) - ) 75(6 1)

= ZSQ (I, n)A log(l + A1)

mym (2.30)
—Z&ln ZZSlmlA !
m=l
= Z (ZSQ (L, n)A™ "8y (m, 1)>
Comparing (2.29) and (2.30), we have
Sy x(m,n) ZSQ (1L, n)A™7LS  (m, 1), (2.31)

l=n

where m,n > 0 with m > n.
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Now, we observe that

Tt 1+ +rrtT
(1+ M) = ((1+At)% —1+1) '
=2 <x1+...+xr+x>((l+>\t)i -1
m
m=0
[e'e] oo tn,
:;J(xl_y,..—i—xr—i—x)m?;I Sg’,\(n,m)m (2.32)
o0 n n
= <Z S2a(n,m) (@1 + - + “C)m) o
n=0 \m=0 n
o0 n tn
- (z S (mm) (&1 4 + 27 +x>m> "
n=0 \m=0 n

Thus, by (2.28) and (2.32), we get

- / (1+ )\t)mdu,l(xl) ceedpy ()

>

S{p>
2

tn

Z Saa(n,m / /Z (71 +"'+$r+5’3)mdﬂ1($1)"‘d/‘1(xr)> n!

Z Sz)\ n m Ch(r)( )) l;l'

m=0

oo
n=0

(2.33)

Therefore, by (2.28) and (2.33), we obtain the following theorem.

Theorem 2.11. For n > 0, we have

ZOh 2)Sa A (n,m) = ic x)S5(n, m).
m=0

m=0

From the generating function of the higher-order degenerate Changhee num-
bers of the second kind, we note that
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T

1+ Mog(l+)* —1
2 _ [ (L4 Alog(1 +1)) 1

1
log(1+1t))* +1 2

;;)2‘"” ((1 + Mog(1 + 1)) — 1)7"

-T

I
‘Mg
TN >

mo—m [T +m—1 - 1 k
(—1)"2 ( o >m! § SQ,A(k,m)E(log(l + 1))
k=m

(1)”"771!(7”4_2 1)2 mS2)\ k m ) i
> n k } n
- Z { Z (—=1)"™ml! (7* + Z - 1)2—mSQ,A(k,m)Sl(n, k)} 7;_'
k

7l

M i0#

and

r

2 r t"
N ZC’hi))\—
(14 Xog(1+1))* +1 n!

Therefore, by (2.34) and (2.35), we obtain the following theorem.

Theorem 2.12. Forn >0, r € N, we have

T m r+ -1 —m
Chlr) = Z Z (r :’; )2 Sox (k, m) S (n, k).

k=0 m=0

Let 8 y be the higher-order degenerate Euler numbers defined by 8

&S’jl(o» (020
Then, by (2.26), we get

(2.34)

(2.35)

,,.
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N 2 v 1+ As —1 -
S et <7 ) A+Mr-1
= n! (1 + )\t) X +1 2
— (T L Mo _m
_Z<m>((1+,\t)x—1) 2

0 n L o i (2.36)
r4+m— pn
= Z(_l)m< , )2—mm! Z SZ,A(n»m)_
m= 0 m n=m n!
o0 n _ 1 n
(e s )
n=0 \m=0 m n
Thus, by (2.36), we get
T m, + 1 —-m
) = Z( 1) (’" " )2 S.a(n,m). (2.37)
m=0

From (2.24), we have

T

Zc’lg(%‘)t—, = 2 | 1+ Alog(1 + )%
n=0 S 14 (14 Alog(1+1t))*
k r—k
2 2
= . T (1+ Alog(1+1))
L+ (14 Alog(1 +1¢))* 1+ (14 Alog(1+1t))*
_ = k)t (r— k)
- <ZChM zv> (ZOCh )

e k tn
X (3 (f)engens )
=\ n!
(2.38)
Therefore, by (2.38), we obtain the following convolution result.
Theorem 2.13. Forn >0, r € N, we have
n
r n —
crii@ =Y () Jentlen B
1=0

Remark. By (2.24), we easily get

>
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r

o0 , n 2 o
ZChn)A(x)t—, = — | (14 Xlog(1+1))*
n=0 v 1+ (1+)\log(1+t))*
> (r) tl m
=Y w5 Jom, A (log(l +1))
1=0 (2.39)
> ot tk
= (ZChz(,,\)—,> ( ) m k2 S1(k, m) 7
= m=0 :

oo ’ n ok "
- (Z D <k>( JuaSik O )

k=0 m=0

Comparing the coefficients on both sides of (2.39), we have

Chst))\ Z Z < > )\Sl(k m)Chn—k A

k=0 m=0
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