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1. INTRODUCTION

Throughout the article, R denotes the set of real numbers, © = (x1,z2, -+, zy)
denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as
R" ={x = (21,22, - ,Zp) :x; ERi=1,--- ,n},

Ri = {w: ($17$27-.. ,LIZ”) X > O,Z = ]_’ ,TL},

In particular, the notations R and R, denote R! and R! , respectively.
Let = (z1,22,-- ,2,) € R} and p,q > 0,p+¢q # 0. The Bonferroni mean was
originally introduced by Bonferroni in [1], which was defined as follows:

1
n p+a

Bri(m) = [ ——— 3 afal (1)

n(n =1, S

Obviously, the Bonferroni mean has the following properties:
(i) BP%(0,0,---,0)=0.

(i) BPY(z,x,--- ,x) =z, if z; = z, for all i.
(it7) BP(x) > BPY(y). i.e., the Bonferroni mean is monotonic, if z; > y;, for
all 7.

(v) min{z;} < BP9(x) < max{z;}.
Furthermore, if ¢ = 0, then by (1), it follows that

1
n n p+0 n P
1 1
Br@)= | -y o=y > ) (Za:’;) ©)
i=1 i,j=1,i#j

which is power means of n variables.
if n = 2, then by (1), it follows that

1
Dy/d qqP\ PFa
BP(g,y) = <$ Yy ;—:U Yy )

which is the generalized Muirhead mean of two variables M (p, ¢; z,y) (See [2]).
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In 2010, Yu-ming Chu etal.[3] studied the Schur-convexity, Schur geometric and
harmonic convexities of the generalized Muirhead mean M (p, ¢; x,y), obtained the
following results.

Theorem A. [6] For fized (p,q) € R?,

(i) M(p,q;z,y) is Schur-conver with (x,y) € R if and only if (p,q) € {(p,q) |
(p—9)*>p+q>0 and pg <0};
(1) M(p,q;z,y) is Schur-concave with (z,y) € R2 if and only if (p,q) €

{p.a) | (p—a)? <p+aq.(p.q) # (0,00 }U{(p,q) [ p+q<0}.

Theorem B. [6] For fized (p,q) € R?,
(4)
(i1)

.q; T, y) is Schur-geometric convex with (z,y) € R if and only if

M(
Pa)e{lp.g p+q>0};
M(p, q;x,y) is Schur-geometric concave with (z,y) € R3 if and only if

(r,q) €{(p,9) I p+q<0}.

Theorem C. [7] For fized (p,q) € R?,

(i) M(p,q;x,y) is Schur-harmonic convex with (z,y) € R% if and only if

) e{p,)) Ip+q>0}{(pq) | p<0,g<0,(p—q)?+p+q
0,p* + ¢* # 0};
(it) M(p,q;z,y) is Schur-harmonic concave with (z,y) € R?,_ if and only if
) e{p) lp>0p+qg<0,(p—q?+p+q>03}{(pq) | qg>
0,p+¢<0,(p—q)?*+p+q>0}.

IN

V

In recent years, the research on Schur convexity of all kinds of means in n vari-
ables is more and more active and fruitful (see [10] - [19]). In this paper, we for the
case of n > 3, discuss the Schur-convexity, Schur geometric and harmonic convexi-
ties of the Bonferroni mean BP+?(x). Our main results are as follows:

Theorem 1. For n >3 and fized (p,q) € R?,
(1) if0<g<p<landp—q <+ p+qp+q#0, then B (x) is Schur-
concave with x € R” ;
(it) if g <p <0 and p+q # 0, then BP9(x) is Schur-concave with x € R} ;
ifp>1,¢<0andp+q>0, B (x) is Schur-convex with x € R ;
ifp>1,¢ <0 and p+q <0, then B>(x) is Schur-concave with x € R'}.

Theorem 2. For n >3 and fized (p,q) € R?,

(7) if p+q >0, then BP(x) is Schur-geometric convex with € R ;
(i1) if p+q <0, then BP4(x) is Schur-geometric concave with € R’} .

Theorem 3. For n >3 and fived (p,q) € R?,

(@) if p>q >0 and p+ q # 0, then BP9(x) is Schur-harmonic convex with

T € RY;

(ii) if 0>p>qg>-1landp+q#0,(p—q?+p+q <0, then B(x) is
Schur-harmonic convex with x € R} ;

(i13) if p > 0,g < —1 and p+ q > 0, then BP9(x) is Schur-harmonic convex
with © € R ;

(iv) if p > 0,qg < —1 and p + q < 0, then BP9(x) is Schur-harmonic concave
with x € R}.
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2. DEFINITIONS AND LEMMAS
For convenience, we introduce some definitions as follows.

Definition 1. Let @ = (x1, 29, - ,z,) and y = (y1,Y2, - ,Yn) € R™.
(i) > y means x; > y; forall i =1,2,--- n.
(7i) Let Q € R™, ¢: © — R is said to be increasing if > y implies p(x) >
»(y). p is said to be decreasing if and only if —¢ is increasing.

Definition 2. Let = (z1,22, - ,z,) and y = (y1,Y2, - ,Yn) € R™.

(7) @« is said to be majorized by y (in symbols & < y) if Zle o) < Zle Yl
for k=1,2,--- ,n—1and Y  z; =" ¥y, where xy; > --- > z},) and
Y[1] = -+ = Y[ are rearrangements of & and y in a descending order.

(i) Let Q@ C R™, the function ¢: © — R is said to be Schur-convex on € if
x <yon Q implies p () < ¢ (y) . ¢ is said to be a Schur-concave function
on € if and only if —¢ is Schur-convex function on €.

Definition 3. Let @ = (x1,x9,--- ,z,) and y = (y1,¥Y2, - ,Yn) € R™.

(1) @ C R™ is said to be a convex set if z,y € 2,0 < a <1 implies ax + (1 —
a)y=(ax1+ (1 — )y, - ,ax, + (1 — a)y,) € Q.

(7i) Let Q C R™ be convex set. A function ¢: Q — R is said to be convex on
if

¢(ax+(1-a)y) < ap(@) + (1 - a)e(y)

for all x,y € Q, and all o € [0,1]. The function ¢ is said to be concave on
Q if and only if —¢ is convex function on €.

Definition 4. (1) A set Q C R™ is called symmetric, if € Q implies P € Q
for every n x n permutation matrix P.
(74) A function ¢ : Q@ — R is called symmetric if for every permutation matrix

P, o(xP) = p(x) for all x € Q.

Lemma 1. [4, p. 84] Let Q C R™ be symmetric and have a nonempty interior convex
set. Q0 is the interior of Q. ¢ : Q — R is continuous on Q and differentiable in
Q. Then ¢ is the Schur — convex (Schur — concave) function if and only if o is
symmetric on Q0 and

(@122 (52 - 52) 2000 (1)

holds for any = € Q°.

The first systematical study of the functions preserving the ordering of majoriza-
tion was made by Issai Schur in 1923. In Schur’s honor, such functions are said
to be “Schur-convex”. It can be used extensively in analytic inequalities, combina-
torial optimization, quantum physics, information theory, and other related fields.
See[11].

Definition 5. [6], [7] Let * = (z1,22,--- ,2,) € R} and y = (y1,¥y2,--- ,yn) € RY}.

(7) © C RY is called a geometrically convex set if (209, a8ys, - x2yP) € Q
for all z,y € Q and «o,8 € [0,1] such that « + 8 = 1.

(i1) Let Q C R}. The function ¢: @ — R is said to be Schur geometrically con-
vex function on Q if (logz1,logxs,--- ,logx,) < (logyi,logys, - ,logyy)
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on Q implies ¢ () < ¢ (y) . The function ¢ is said to be a Schur geo-
metrically concave function on Q if and only if —¢ is Schur geometrically
convex function.

Lemma 2. [6] Let Q C R} be a symmetric and geometrically convex set with a
nonempty interior Q. Let ¢ : Q — R be continuous on Q and differentiable in
Q0. If ¢ is symmetric on Q and

0 0
(log 1 — log xo) (xla—fl — I (9—;;02> >0 (<0) (5)
holds for any ® = (x1,xa,--- ,x,) € QY, then ¢ is a Schur geometrically convex

(Schur geometrically concave) function.

The Schur geometric convexity was proposed by Zhang [6] in 2004, we also note
that some authors use the term “Schur multiplicative convexity”.

In 2009, Chu [8], [9] introduced the notion of Schur harmonically convex function,
and some interesting inequalities were obtained.

Definition 6. [8] Let Q C R}.

(1) A set Q is said to be harmonically convex if m € Q for every
N 1 1 1 1
x,y € Qand A € [0,1], where zy = )", z;4; and i (x—l, = ’E)

(74) A function ¢ : Q — R, is said to be Schur harmonically convex on Q if - <

1
v implies p(x) < ¢(y). A function ¢ is said to be a Schur harmonically

concave function on € if and only if —¢ is a Schur harmonically convex
function.

Lemma 3. [8] Let @ C R be a symmetric and harmonically convex set with
inner points and let ¢ : Q@ — Ry be a continuously symmetric function which is
differentiable on Q°. Then ¢ is Schur harmonically convex (Schur harmonically
concave) on Q if and only if

I¢p(x) d¢(x)
— 2 — a2 > < 0,
(o1 - o) (322 - %) 0 (<0, wen ©)
Lemma 4. For z > 1, let
f(z) = =gz 7" 4 p2P T —pztq (7)
(i) f p>q>0and (p— q)* <p+gq, then f(2) <0;

(i4) if ¢ <p <0, then f(z) > 0;

(#ii) if p>0,q <0 and (p — q)®> > p+q, then f(z) > 0;

(iv) if p>0,¢g<0 and p+q <0, then f(z) > 0.

’

f(2)=—qlp—q+ 12"+ p(p—q)2"" " —p.
F)=—-qp—qg+D)+pp—q)—p= (- (p+q).
F @) =—ap—q+1)p - T +pp—q)(p—q— 1)1

= P17 2p(2)
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where
h(z)=—qlp—q+1)(p-q)z2+plp—q)(p—q—1). (8)
h(1)=—qp—q+ -9+ -—q-1)=0-9llp-0* @+
B (z)=—qp—q+1)p—0q)

(i) if p>q>0and (p—q)* < p+q, then h/(z) < 0 and A(1) < 0, therefore
h(z) < 0 for z > 1, meanwhile £ (z) <0, but f (1) <0, so that f (z) <0,

from f(1) =0, it follows that f(z) <0 for z > 1.
(i1) if ¢ < p <0, then h/(z) > 0 and h(1) > 0, therefore h(z) > 0 for z > 1,

meanwhile f”(z) > 0, but f (1) > 0, so that f (z) > 0, from f(1) = 0, it
follows that f(z) >0 for z > 1.

Proving propositions (¢i¢) and (iv) is similar to proposition (i7), so it is omitted.
The proof of lemma 4 is complete. |

Lemma 5. For z > 1, let
g(z) = PP~ g4 gy )
(i) if p>q >0, then g(z) > 0;

(i1) if 0>p>qand (p—q)*+p+q <0, then g(z) <0;

(#1) if p>0>qand (p—q)*> +p+q >0, then g(z) > 0.
Proof.

g(z)=plp—q+1)2"" " —qlp—q)2" " +q.
W) =pp—q+1)—qp—q)+q=p—-q?+p+gq
9 ) =plp—q+1)p—q)P " —q(p —q)(p— q—1)2P~ 72
=(p—q)2" " *m(2)

where

m(z) =plp—q+1)z—qlp—q-1). (10)
m(1)=(p-q°+p+q

m'(z) =p(p—q+1)
(i) if p > q >0, then it is easy to see that m (z) > 0 for z > 1, but m(1) > 0,
therefore m(z) > 0 for z > 1, meanwhile ¢ (z) < 0, but ¢ (1) > 0, so that
g (z) >0, from g(1) = 0, it follows that g(z) > 0 for z > 1.
(ii) if 0 > p > qand (p — ¢)> +p+q < 0, then m/(z) < 0 and m(1) < 0,
therefore m(z) < 0 for z > 1, meanwhile " (z) < 0, but ¢ (1) < 0, so that
g (z) <0, from g(1) = 0, it follows that g(z) < 0 for z > 1.
Proving propositions (7i7) is similar to proposition (), so it is omitted.
The proof of lemma 5 is complete. (|

Lemma 6. [4] Let x = (z1,22, - ,2) € R} and A, (x) = L3 z;. Then

603
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Lemma 7. [4, p. 189] If x; > 0,i = 1,2,...,n, then for all nonnegative constants
¢ satisfying 0 < ¢ < LY @,

T Ty T —c¢ T, —C
(zz ) ) (z;;l(xj —c>""’z;;1<xj—c>> .

3. PROOF OF THEOREMS
Proof of Theorem 1: Let

n(n —1)
: [px’l’_l @i+ ai4-+2l)+qed (@b +ah++ a?fl)]

BBP’q(a:) o 1 ﬁ_l 1
drs  ptgq (b(@))7 n(n —1)

[pat 7t @+ af o+ 2h) +paft (@f +2f -+ )]

It is easy to see that BP(x) is symmetric on R}, without loss of generality, we
may assume that x; > xo > 0. Let z = :—; Then z > 1.

o oBPi(x) OBPY(x)
Ar = (21 — x2) < .
1 1 B 3
= (o1 = wa) g G@) ™ e bl bt (ed e
+q(@h+- -+ al)(@f 7 =28 + e (pro — qr1) + 21 2h T (qae — poa))]
1 1 1 B B
= (1= o) (@)™ Sl o e -
+q@@h 4+ al) (@l -2 + 2T (P (p - g2) + 297 g — p2)))]
1 1 1 B 3
= (o1 — @) (@) 77 ey Iplad ) (e - as )
el +Fal)(@f T —ad ) 2B T (2)] (14)

For n > 3 and fixed (p,q) € R?,

()if0<g<p<landp-—q<+p+¢gp+qF#0, then by (i) in Lemma 4,
it follows f(z) < 0. Furthermore, from x; > xo > 0, we have at’l’fl — x’z’fl <0
and 297" — 247! < 0. Hence from (12), we conclude that A; < 0, by Lemma 1, it
follows that BP(x) is Schur-concave with & € R’}

(#i) if ¢ < p < 0 and p+ q # 0, then by (i) in Lemma 4, it follows f(z) > 0.
Furthermore, from ; > x5 > 0, we have p(z? ™' =25~ ") > 0 and ¢(z? ' 24~ ") > 0.
Notice that piq < 0, from (14), we conclude that A; < 0, by Lemma 1, it follows
that BP9(x) is Schur-concave with & € R’. then BP%(x) is Schur-concave with
T € RY
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(iii) if p>1,g <0and p+¢q > 0, then (p —¢)> >p—q>p > p+q, and then
by (i4i) in Lemma 4, it follows f(z) > 0. Furthermore, from z; > 23 > 0, we have
pa? ' — b7y > 0 and ¢(z?"' — 2Z7') > 0. Notice that pqu > 0, from (14), we
conclude that A1 >0, by Lemma 1, it follows that BP*9(x) is Schur-convex with

T € RY.
(i) if p>1,¢g <0 and p+ q <0, then by (w) in Lemma 4, it follows f(z) >0
Furthermore, from &1 > @y > 0, we have p(z? ' =257 ") > 0and g(z¢ ' =227 1) > 0.

Notice that m < 0, from (14), we conclude that A1 <0, by Lemma 1, it follows

that BP4(x) is Schur-concave with € R}.
The proof of Theorem 1 is completed.
Proof of Theorem 2:
3Bp’q(:13) 1 1 4 1
x = b(a))r+a - -
! o0z p—l—q(( ) n(n —1)

[pat (xd + 2k + 4 2d) + gaf (af + 2k + - 4 2h)]

~
+

oOBP1(x) 1 1y 1
T = b(x)) P+ R
> Oy p+q(( ) n(n —1)
[pay (@ +ag + -+ 2f) +gah (2f + a5 + -+ a))]

Without loss of generality, we may assume that z; > xzo > 0. Let z = “’2. Then
z>1.

o oOBP1(x) oOBP1(x)
Ay = (21 — 29) <x1 O T 925

= (@1 = 22) o (@) e slplaf -+ ) )
+a(ah + - +ah) (@] — a3) + paial — pafal + qziah — qala])]
= (@1 = a2) - (@) e slplaf -+ ) (e )
Fa(eh e a)(ad 2 + (- a)edab(r =), (15)

Note that there are always p(z} — 28) > 0 and ¢(2{ — 23) > 0. For z > 1,
the function z! is increasing with ¢, so (p — ¢)(2? — 2%) > 0. Thus if p + ¢ > 0,
then from (15), we conclude that Ay > 0, by Lemma 2, it follows that BP%(x) is
Schur-geometric convex with & € R, if p + ¢ < 0, then from (15), we conclude
that Ay <0, by Lemma 2, it follows that BP9(x) is Schur-geometric concave with
T € RY.

The proof of Theorem 2 is completed.

Proof of Theorem 3:

20BM(2) 1 L1

1 axl - p+q (b(x))1)+q n(n — 1)

[Pw{fﬂ (xd +ad+ -+ ) + g™ (af + af +"'+$ﬁ)}

28Bp’q(33) o 1 1 9 1

B = g )

[Pt @l 4 b ol) 4 aof (@ +ab o)
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Without loss of generality, we may assume that z; > x5 > 0. Let z = i—; Then

z>1.

OBP(x) 283”"1(11:))
Ag:= - -
3 (xl iUg) <$1 a 71 Lo ax2

]. 1 1 l 1 1
= (21 — x2)p+ p (b(x)) 7+ m[@(ﬂcg o al) (@ 2hTh
+q(ah 4+ a) (@I — 28T 4 opat T ad — padabtt 4 qad T ah — gabadth)
1 1 1 1 1
e “)wq @) @ ) )
g+ 4 al) (@i — 2l + 2l T2l (2P (2 — ) — (p — ¢2))]
1 A1 L 41 ptl
= (o1 — $2)p+ p (b(x)) 7+ m[l’(zg oty (@ —ab)
+q(@h + -+ ) (@ - 2dth) + 2h  alzg(2))

(16)

For n > 3 and fixed (p,q) € R?,

(i) if p > ¢q > 0and p+ g # 0, then by (i) in Lemma 5, it follows g(z) > 0.
Furthermore, from z; > x5 > 0, we have p(z? ™' —25*") > 0 and (27 —2%™") > 0.
Hence from (16), we conclude that Ag > 0, by Lemma 3, it follows that BP(x) is
Schur-harmonic convex with x € R} ;

(i) if 0>p>q>—1land p+q#0,(p—q)* +p+q <0 then by (ii) in Lemma

5, it follows g(z) < 0. Furthermore, from &1 > x5 > 0, we have p(z?T' —22T1) <0
and q(z%t — 22Ty < 0. Notice that m < 0, from (16), we conclude that Az > 0,
by Lemma 3, it follows that BP(x) is Schur-harmonic convex with & € R} ;

(#7d) if p > 0,q < —1 and p+q > 0, then (p — q)?> +p+ ¢ > 0, and then by
(7i) in Lemma 5, it follows g(z) > 0. Furthermore, from z; > x5 > 0, we have
p(a?Th — 28 > 0 and ¢(z?T" — 2%T') > 0. Notice that ﬁ > 0, from (16),
we conclude that Ag > 0, by Lemma 3, it follows that BP*Y(x) is Schur-harmonic
convex with © € R'}.

(i) if p > 0,q < =1 and p+q < 0, then (p—q)*+p+q = p*+q(¢g—p+1)+p(1—q) >
0, by (iv) in Lemma 5, it follows g(z) > 0. Furthermore, from 1121 > x9 > 0, we
have p(z?™" — 28%") > 0 and (27" — 24*") > 0. Notice that —+— <0, from (16),
we conclude that As <0, by Lemma 3, it follows that BP4(x ) 1s Schur-harmonic
concave with = € R}.

The proof of Theorem 3 is completed.

4. APPLICATIONS

Theorem 4. Let n > 3 and (p,q) € R% If (p,q) € {(p,q)|0 § g <p<1and
p+q#0,pfq§\/p+q}U{(p, Q)lp+q<0,p>1,¢<0}, then for x € R, we
have

Bri(z) < Ay(a) (7)

if (p,q) € {(p,q)|p >1,q <0 and p+ q > 0}, then the inequality (17) is reversed.

Proof. if (p,q) € {(p, )0 < g<p<landp+q#0,p—q<yp+q}U{(pglp+
qg<0,p>1,qg <0}, then by Theorem 1, from Lemma 6, we have

B (w) > B"(a),
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rearranging gives (17), if (p,q) € {(p,¢)lp > 1,¢ < 0 and p + ¢ > 0}, then the
inequality (17) is reversed.
The proof is complete. O

Theorem 5. Let n > 3 and (p.q) € R?, © € R, and the constant ¢ satisfying
0 <e<min{z;},i=12,....n. If (p,q) € {(p, )0 <qg<p<Tlandp+q#0,
P—q<+p+q}H®ep+qe<0,p>1,4¢<0}, then we have

c
A, (x)
if (p,q) € {(p,q)lp > 1,9 <0 and p+ q > 0}, then the inequality (18) is reversed.

BPUxy —cyxo — ¢y .o yy — ) < (1— ) BPY gy, xe, ... xy) (18)

Proof. Note that 0 < ¢ < min{z;} < L3  z;,if (p,q) € {(p, )0 < g<p<1

and p+q#0,p—q<p+q}U{(p,g)lp+q<0,p>1,¢<0}, then by Theorem
1, from Lemma 7, we have

Bp,q nml AR Tirn Z‘Bp’q 'n,xl_c 7 ’le,’l_c
> =1 %) 2 =17 2@ —o) > (@i—o)

rearranging gives (18), if (p,q) € {(p,¢)lp > 1,¢ < 0 and p + ¢ > 0}, then the
inequality (18) is reversed.
The proof is complete. O

Theorem 6. Let n >3 and (p,q) € R>. If p+q > 0, then for x € R, we have
BP(x) > Gn(x) (19)
where G, (x) = '\‘/m If p+ q < 0, then the inequality (19) is reversed.
Proof. From Lemma 6, we have
(log Gp(x),log G\ (x), ..., log Gp(x)) < (logz1,logzs,. .., logx,).
If p+ q < 0, then by Theorem 2, we have
Gn(z) = BP1(Gp(x), Gp(x),...,Gn(x)) < BP (11,22, ...,2,) = BPY(x).

If p+ g < 0, then the inequality (19) is reversed.
The proof is complete. (]

Theorem 7. Let n > 3 and (p,q) € R%. Ifp > q > 0 and p+ q # 0, then for
x € R, we have

BP(2) > H,(x) (20)

where H,(x) = ﬁ

Proof. From Lemma 6, we have

(Hnl(w)7Hn1(w)7"”Hnl(w)> ) (m%w%%)

If p>¢q>0and p+ q#0, then by Theorem 3, we have
H,(x)=B""(H,(x),H,(x),...,H,(x)) < B”?(x1,2,...,2,) = BP(x).

The proof is complete. O
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