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POSITIVITY OF SUMS FOR n—CONVEX FUNCTIONS VIA
TAYLOR’S FORMULA AND GREEN FUNCTION

A. R. KHAN'?, J. PECARIC?*?, M. PRALJAK?, AND S. VAROSANEC®

ABSTRACT. Conditions under which the inequality > 7" pif(z;) > 0
holds for every n-convex function f are considered. We are using two
approaches: one by the Taylor formula and other using the Green func-
tion. Integral analogues and some related results for n-convex functions
at a point are also given, as well as bounds for the integral remainders
which occur in identities associated with the obtained inequalities.
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1. INTRODUCTION

In the forties of the last century, T. Popoviciu studied necessary and
sufficient conditions on numbers x1, ..., Zm, p1, - - -, Pm under which the in-
equality > p;f(x;) > 0 holds for any convex function f. Nowdays such
results are known as Popoviciu type inequalities and a number of them is
given in [7, Chap. 9]. We are interested in such results involving n-convex
functions, so let us first recall the definition and some properties of n-convex
functions.

Definition 1.1. The n-th order divided difference of a function f : [a, b] —
R at distinct points z;, x;41, . . ., Titn € [a,b] C R for some i € N is defined
recursively by:

[z f] = f(z;), jed{i,...;i+n}
. o mmn s miant fl = @ @i f]
[‘le"'v'l'l-f‘n’f] - Titn — Tj )

We say that f is n-convex or convex of the n-th order if all the n-th order
divided differences of the function f are non-negative, i.e. if

(i, s Zigns ] 20
for any mutually distinct points ;, . .., Zitn € [a, b].

It is clear that a l-convex function is in fact a nondecreasing function,
and a 2-convex function is a convex function in the classical sense. So, the
concept of n-convexity is a generalization of convexity. It is a known fact
that if the n-th order derivative f"") exists, then f is n-convex if and only
if f(") > 0. For 1 < k < n— 2, a function f is n-convex if and only if
) exists and is (n — k)-convex. Furthermore, f is n-convex if and only
if f e =2 fn-1) exists everywhere except in at most countable many
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points and f("~1) is nondecreasing. In the further text we use notation
(z — s)k, k € Ny, for the following

Y N R L
v é)+_{ 0, if 2 < s.

The following result for n-convex functions is due to T. Popoviciu (see [7,
p.262] and [8]).

Proposition 1.2. The inequality
m

(1) > pif(a) =0
i=1

holds for all n-convex functions f : [a,b] — R, n € N, if and only if the
m—tuples x = (x1,...,Tm) € [a,b]™, p = (p1,...,pm) € R™ satisfy

m
(2) Zpﬂ'fzo, forallke{0,1,....n—1}
i=1
(3) sz‘(l'i —s)"1 >0, for every s € [a,b],
i=1
In fact, Popoviciu proved a result in which z1 < 23 < ... < x, and (3)

holds for every s € [x(1), Z(;m—n41)], Dut, as discussed in [2], it also holds in
the form given in the above proposition. The integral analogue is given in
the next proposition.

Proposition 1.3. Let p : [a, 8] — R and g : [a, 8] — [a, b] be integrable.
Then the inequality

8
(4) / p()f(g(2)) dz > 0

holds for all n-convex functions f : [a,b] — R if and only if

/Bp(:v)g(z)kd;sz forallk e {0,1,....n—1}
%) .
/ p(x) (g(z) — 5)171 dx >0, for every s € [a,b].

Remark 1.4. Case n = 2 was of particular interest and in [4] (see also [7,
p.262]) it is proved that if n = 2 conditions (2) and (3) can be replaced with

m m
(6) Zpi:() and Zpi|xi—xk| >0forke{l,...,m}.
i=1 i=1
Finally, let us mention the Taylor formula which has a crucial role in our
work. Let I be an interval in R and f : I — R be a function such that f(»—1)
is absolutely continuous on I C R, a,b € I, a < b. Then for ¢, x € [a, b] the
following formula holds

n—1 (k) c ”
0 fw =31 k!( Vo — o + ﬁ/ FO () (= )" Vs,
k=0 c
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The outline of the paper is as follows: in Section 2 we use the Taylor
formula (7) to obtain inequalities of type (1) and (4) for n-convex func-
tions. In section 3 we obtain Popoviciu type inequalities using the Green
function and the Taylor formula. In Section 4 we give related inequalities
for n-convex functions at a point, a generalization of the class of n-convex
functions introduced in [6]. In Section 5 we give bounds for the integral
reminders which occur in identities obtained in earlier sections by using the
pre-Griiss inequality. In the last section we prove certain properties of lin-
ear functionals associated with the obtained inequalities which follow from
exponentially convexity and log-convexity.

2. POPOVICIU TYPE IDENTITIES AND INEQUALITIES VIA TAYLOR
FORMULA

Our first result is an identity which is a basic tool for our subsequent
results.

Theorem 2.1. Letn,m € N and f : I — R be a function such that f("=1) js
absolutely continuous on I C R, a,b € I, a < b. Furthermore, let z; € [a, b]
and p; € R forie{1,2,...,m}. Then

3\
—
\h.

Zl)z'f(l'i) = Z
i=1 i=1
(8) ; 1y/f g(zpmlg )

and

=~
Il
=)

Zpif(vl'z)
i=1

I
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SUTJL

—
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=
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= =
=l
=
=
i
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—~
<o

|

8
~—

+ (L_1)1n /f <¥ (s—wi);H) ds.

Proof. Using notation (z — s)4 we get

x b
L= as = [0 - o as

for z € [a, b] and applying the Taylor formula (7) for ¢ = a we get

n—1
O 0 =3 10k s [ - s



518 A. R. Khan, J. Pecari¢, M. Praljak and S. VaroSanec

Putting in (9) = z; for ¢ = 1,2, ..., m, multiplying each equation with
the corresponding p;, and adding all m equations we get

m

S - o520
i=1 —
+ m/ £ () (i — 8)1—1%}
- f
- Z Ty — (,L

= /f(" (sz zi - 1>ds

which is the desired identity (8). The second identity is proved in a similar
manner using the fact that for z € [a, ]

T b
[ 10w = s tds = (<1 [ s - )y s
b a

and applying the Taylor formula for ¢ = b. (]
We may state its integral version as follows.
Theorem 2.2. Let g : [a, 3] — [a,b] and p : [o, B] — R be integrable

functions. Let n € N and f : I — R be such that f™ V) is absolutely
continuous on I CR, a,be I, a <b. Then

/jp(w ”il (@) / —a)kda

k=0

+ (n— 1)! /a f(n)('s) /a p(z) (g(x) — 8)1_1 dxds,

B n-1 (k) 8
[ r@ st ar= Y 0 ) 0 g

k=0
1\ b 3
(EL_l)m / () / p(x) (s — g(x))}" duds.

Proof. Our required identities are obtained by using the Taylor formulae for
¢=a and ¢ = b in the expression

8
| p@ (@) ds
«
and then using the Fubini theorem. O

Now we state inequalities derived from the obtained identities. In the rest
of the paper we use the following notation:

(10) Q[la X (m,x,p, s Zpl T — s)ﬁlil) ,
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(11) Q[a b](m X, P, s): sz (s — ,
n=1 (k) m
(12) A[1 b](m X, p, f sz f(a) Zpi(wi —
k=0 i=1
n—1 (k) m
(13) Ao x p, f): Zpl Z)—Z(—l)kfk—'(b)Zpi(b—wi)k.
k=0 o=l

Theorem 2.3. Let n,m € N, z; € [a,b], I is an interval, [a,b] C I and
pi €ER forie{1,2,...,m}.
(i) If
(Uh) Q[la’b](m x,p,s) >0, foralls€la,b],
then for every n—convex function f : I — R such that f(”_l) 1s absolutely
continuous on I the following inequality holds

(14) Al x p, f) > 0.
If in (Uy) reversed sign of inequality holds, then inequality (14) is also re-
versed.
(ii) If
(Us) Q[Qa‘b](m x,p,s) >0, forall s € la,b,

then for every n—convex function f : I — R such that {1 is absolutely
continuous on I the following inequality holds

(15) ALY x. p, f) > 0.

If in (Usa) reversed sign of inequality holds, then inequality (15) is also re-
versed.

If the condition 7f is n-convex” is replaced by "f is n-concave”, then
under the same assumptions about Q1 and Qa, inequalities (14) and (15)
hold in the reversed direction.

Proof. We prove () Let Qa’ ](m x,p,s) > 0 for all s € [a,b] and let f be
n-convex. Then, £ > 0 and

[ <sz i - )da>0
By Theorem 2.1

A[la‘b](m x,p, f)= 1)'/ f (s) (Zpi(l'i - b)¢1> ds 20
i=1

and we get (14). Other cases are proved in a similar manner. O

Now we state an important consequence.

Theorem 2.4. Letn € N, n > 2, [a,b) CT CRand f : I — R be a
function such that =Y is absolutely continuous. Additionally, let j € N
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be fized, 2 < j < n and let (x1,...,2m) € [a,b]™, (p1, ..., pm) € R™ satisfy

(16) ipﬂ;fzo for k=0,1,...,j—1,

(17) > pi(zi— )\t >0, fors € [a,b].

If f is n-convex, thezrzzl

(18) il)z‘f (25) = 5 f(k;'(a) ilh‘ (zi —a)"
i=1 k=j Coi=l

with agreement that for j = n, we put Ez;]l =0.
Furthermore, if n — j is even, then

m n—1 (k) m
19 Sns) 2 DS )

while if n — j is odd, then the reversed inequality in (19) holds.

Proof. Let s € [a, b] be fixed. Notice that for j = n we just get Proposition
1.2. For j < n —2 we get

Lot { (DD a2

A 70, a<w<s,
and
1yt = [ =D =2 (=) =) I aga <,
dxd + 0, s<x<b,
The functions z — %j(x -7 and z (—1)j%(s — z)""! are non-

negative. Hence the functions z — (z — s)’}r_1 and x — (—1)7(s — ;L')i_l are
J-convex.

If j = n — 1, then we consider the functions z +— (z;,—__i(l — s)’f;l and

T (—1)”_1‘1‘?,;33 (s — LL’)i—l. They are 2-convex, so z — (z — s)ﬁ_l and
x> (=1)" (s — x)""" are (n — 1)-convex. Hence if 2 < j < n — 1, the

functions x — (z — s)7" ! and z — (—1)7(s — 2)"" " are j-convex.

Using Proposition 1.2 for the j-convex functions z + (z — s)7"' and
x> (=1)7(s — x)"" ", we get that

m
(20) S piei—90 V>0
i=1
and
) m
(=17 i (s — )V 0.
=1

Multiplying the last inequality with (—1)"~J (it is positive for even n — j)
we get

(21) (1" Y pi(s — 20 > 0.
=1
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Inequalities (20) and (21) mean that assumptions of Theorem 2.3 (i) and (ii)
are satisfied, hence inequalities (14) and (15) hold respectively. Moreover,
due to assumption (16), Y 1 piP(z;) = 0 for every polynomial P of degree
< j—1, so the first j terms in the inner sum in (12) and (13) vanish, i.e.
we get inequalities (18) and (19). O

Theorem 2.5. Letn € Nyn > 3. Let j € {2,3,...,n— 1} be fized number
and let m—tuples x = (1, ..., xm) € [a,0]™, p = (p1, ..., pm) € R™ satisfy

m
(22) Zpil'f:(), forallk €{0,1,...,5—1}

(23) sz T — 8) ] > 0, for every s € [a, b].

Ifla,b] C T C R and f : I — R is n-convex such that {1 is absolutely
continuous with at least one of the following two properties

—a)* 7 >0 for all x € [a, ]

(11) Z( 1)k 7 (j))) (b—x)*7 >0 forall x € [a,b] with even n — j,

then the mequalzty
(24) > pif(a) =0
i=1
holds.
Proof. Let us suppose that f satisfies property (i). Define H by

Then

H(J Z (k — J)' a)kfj

and HY)(2) > 0, z € [a, b]. Hence H is j-convex. Using Proposition 1.2 for
the j-convex function H we obtain

m
ZP@'H(-LZ) >
=1

That conclusion and the previous theorem give

sz -Lz >Zf %l Z Di 'i—a)k:ZpiHl
i=1

i=1

which is de51red mequahty (24) If f satisfies property (ii), then we consider
n—1

b

the function H(z) = Z(_ ) ( )
k=j

manner. .

L2 (b — 2)* and proceed in the similar
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Remark 2.6. Let us consider the case: j = n — 1. Then for an n-convex f
under the assumptions f(*~1(a) > 0 and (22), (23) we get 7, p;if(x;) > 0.
In comparison with Proposition 1.2, we see that one condition is added and
(2), (3) are valid not for n, but for n — 1. So, this result is an improvement
of one direction given in Proposition 1.2.

In the rest of the section we state integral versions of the previous results,
the proofs of which are analogous to the discrete case.

Theorem 2.7. Let g : [a, 3] — [a,b] and p : [o, B] — R be integrable
functions and let f : I — R, [a,b] C I, be such that F=1 s absolutely
continuous.

If
3
Us) (o, 6], g, p,s) = / p() (g(z) — )0 d > 0,

for all s € [a, b], then for every n—convex function f the following inequality
holds

o)
A (0, 3], g.p, f) = / p () f(g(a)) da
nl ) () [0
(29 S e - ot 2o,
k=0 «

If in (Us) reversed sign of inequality holds, then inequality (25) is also re-
versed.
If
.} ’ (n-1)
@) a8 gp) = (1" [ p(a) (= gV do 0,

for all s € [a, b], then for every n—convex fungtz'on f the following inequality
holds

B
AL“’I’]([wﬁ],g’P? ) :=/ p(x) flg(x)) dx
n—1
o B )kf >/ p(a)(b = g(x)) dz = 0.
k=0 ¢

If in (Uy) reversed sign of inequality holds, then inequality (26) is also re-
versed.

If the condition ”f is n-convex” is replaced by "f is n-concave”, then
under the same assumptions about Q3 and €y, inequalities (25) and (26)
hold in the reversed direction.

Theorem 2.8. Suppose all the assumptions from Theorem 2.2 hold. Addi-
tionally, let j e N, 2 < j<nandletp: [a,0] = R and g : [, 8] — [a, ]
satisfy

54
/ p(x)g(x)*de =0, forallke{0,1,....j—1}
e}

/ p(x) (g(x) — s)) 7" dx >0, for every s € [a, b].
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If f is n-convex, then

3 n—1 (k) a
[ v st ar= 3
«a k=j .

-6
/ p(@) (9(z) — )t du.

[e%

If, in addition n — j is even, then

B n-l (k) (p) 1B
0 [ @) o) > S0 [ 6 - gt ar
while if n — j is odd, then the reversed sign of inequality holds in (27).

3. POPOVICIU TYPE INEQUALITIES VIA GREEN FUNCTION

In this section we obtain another identity and the corresponding linear
inequality using the Green function and applying again the Taylor formula.
The Green function is a function G : [a, b] X [a,b] — R defined by

(s=b)(t—a) £ <t< g
G(.s,t)—{ = ora<t<s,

UDa) for s <t <.

The function G is convex with respect to each variable. The next theorem
contains two identities in which the sum Y"1, p; f(;) is expressed with the
n-th derivative of the function f and the values of the first n — 3 derivatives
of f in the points a and b.

Theorem 3.1. Letn € N, n >3, and f : I — R, [a,b] C I, be a function
such that f=1) is absolutely continuous. Furthermore, letm € N, x; € [a, b]
and p; € R fori € {1,2,...,m} be such that

21&' =0, 21’01‘%1‘ =0.
Then
m n=3 (k+2) b m
S oniste) =3 L S w6t e - ot
i=1 k=0 ) a =1
1 b -(n) S n—3
(28) + (7L—3)'/ 7 (s) ZpiG(;L‘i,t)(t—s) dt | ds
cJa S =1
and
m n—3 (k+2) b H m
St = S0 S Gt 0 - ot
i=1 k=0 ’ a =1

1 R B R e _
(29) —m/a F(s) (/a ;piG(Ll,t)(t—é) 3dt> ds.

Proof. Using integration by parts the following is valid

bh—
b—a

—a b
fla)+ b—af(bH/a Gz, t)f"(t)dt.

fla) =
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Putting in the above equality x = x;, multiplying with p;, adding all the
equalities for i = 1,...,m and using the conditions that Y /" p; = 0,
Yoty pixy = 0 we get

m b/ m
Zpif(l“z‘) =/ <ZP2‘G(&U¢J)> J(t)dt

Differentiating (7) twice we get

n—3
(30) fa)=> ——
k=0

Putting in (30) ¢ = a and ¢ = b respectively we get

m n=3 ,(k 2)(
> pif () Zf +2) a)/ (Zpl it )t_a)kdt
=1 k=0
(n—3 //j (s)(t = )" (Z[)z 127t)>d5dt

m =3 L(k+2) b/ m
D opif(z) =) %/ (ZPiG(l'u t)> (t —b)rat
i=1 k=0 a i=

(n— / / f )(t— )" (gPiG(Ii,t)> dsdt.

Using the Fubini theorem we obtain identities (28) and (29). O

il W (s)(x — s)"3ds.

Theorem 3.2. Let n,m € N, n > 3, x = (x1,...,2m) € [a,b]" and p =
(p1,---,pm) € R™ be such that

(31) > pi=0, > puri=0.
i=1 i=1
(i) If
(Us) Q[; 2 (m,x,p, s / ZpiG(u, t)(t—s)"3dt > 0 for all

s € [a,b], then for every n—convex function f:I — R such that f™=1) s
absolutely continuous on I C [a, b] the following inequality holds

Aéab](m x,p, f):=
(32) ipzf(obz) — i %2')(&) /b ipiG(wi, t)(t — a)kdt > 0.
i k=0 ’ @ =1

(3
If in (Us) reversed sign of inequality holds, then inequality (82) is also re-
versed.
(ii) If
(Us) Q[gl’b](m X, P, s .—/ Z[)ZG(.LZ, Y(t—s)""3dt < 0 for all

s € [a,b], then for every n—convex functwn f: I — R such that {1 is
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absolutely continuous on I C [a,b] the following inequality holds

AL (m,x, p, f) =
3
n- kf k+2

(33) Z pif(xi) Z( 1)

k=0

/ Zpl x5, t)(b—t)kdt > 0.

If in (Ug) reversed sign of inequality holds, then inequality (83) is also re-
versed.

(iii) If the condition ”f is n-conver” is replaced by ”f is n-concave”,
then under the same assumptions about Qs and Qg, inequalities (32) and
(33) hold in the reversed direction.

Proof. If f is n-convex, then f(") > 0. Using this fact and the identities
from Theorem 3.1 we get the required results. O

If we add an additional condition on x, then in the previous statements
we can remove assumptions about 5 and . More precisely, we have the
following result.

Theorem 3.3. Let n € N, n >3, and f : I — R, [a,b] C I, be a function
such that =1 is absolutely continuous. Furthermore, letm € N, z; € [a, b]
and p; € R fori e {1,2,...,m} such that

Zpl—o ZP1|M x| >0 fork=1,2,.
i=1
If f is n-convex, then (32) holds. If n is even, then (33) is valid, while if
n is odd, then a reversed sign in inequality (33) holds.

If f is n-concave, then reversed (32) holds. If n is even, then reversed
(83) holds, while if n is odd, then inequality (33) holds.

Proof. By Remark 1.4 m-tuples x, p satisfy the assumptions of Proposition
1.2. Since G is convex with respect to the first variable, using Proposition
1.2 we conclude that

m
ZPiG(Iz‘,t) >0 fort € [a,b].
i=1

Note that (¢ — s)" ™2 > 0 for t € [s,b] so we get Qéa’b](’m?xp, s) > 0. By

Theorem 3.2 (i), we have that A[a ](m7 X, p, f) > 0. Other parts are proved
in the similar manner. O

The integral versions of the previous three theorems may also be stated.
Since the proofs of these results are similar, we omit the details.

Theorem 3.4. Let g : [a, 8] — [a,b], p: [a, 8] — R be integrable functions
such that

6 8
(34) / p(z)dz =0, / p(z)g(z)dz = 0.
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Letn > 3 and f : I — R, [a,b] C I, be a function such that (=1 is
absolutely continuous. Then we get the following identities

/jp(* ) da = Z L ( / (Lﬁp(w)G(g(w)7t)dw> (t—a) dt

a

3)./ 7(s) (/ (/ pa)Glaa), ) ) (¢ ="~ dt) .
/ Bp(w)f(g(w)) dz = g(—l)k% / " ( / )G (), t)@-) (b—t)dt

_ ﬁ /ab £ () (/a (/j p(w)G(g(l'),t)dw) (t— .s)"‘gdt> ds.

Theorem 3.5. Let g, p, n satisfy assumptions of Theorem 3.4 hold.
(i) If

b B
(7)o Blg.p )= | ( / p<w>G<g<w>,t>dw) (t—s)"3dt > 0

for all s € [a,b], then for every n—convex function f : I — R, [a,b] C I,
such that =1 is absolutely continuous, the following inequality holds

B
A (o, 8], 9.p. ) ::/ p(x) flg(x)) dx

n=3 p(k42) () b 8
@ - ([ sween) et azo

k=0 a \Ja
If in (U7) reversed sign of inequality holds, then inequality (85) is also re-
versed.

(ii) If

- 8
W) 9o, gpes)i= [ ([ 06t ) -2 <0
a (o3
for all s € [a,b], then for every n—convexr function f : I — R, [a,b] C I,
such that {1V is absolutely continuous, the following inequality holds

3
AP (o8 9.0 0) = [ bl 1(o(w) do

n—3
f k+2 b)
36)  —> (-1)F (2)G(g(z), t)dz ) (b —t)*dt > 0.
2 / (/ p glx >

If in (Ug) reversed sign of inequality holds, then inequality (36) is also re-
versed.

(iii) If the condition ”f is n-convex” is replaced by ”f is n-concave”,
then under the same assumptions about Qy and Qs, inequalities (35) and
(36) hold in the reversed direction.

Theorem 3.6. Let all the assumptions of Theorem 3.4 hold. Additionally,
let

8
/ p(x)(g(z) =) dx >0 for allt € [a,b].



Positivity of sums for m-convex functions via Taylor’s formula and Green function 527

If f is n-convex, then (35) holds. If n is even, then (36) holds, while if n
is odd, then a reversed sign in inequality (36) holds.

If f is n-concave, then reversed (35) holds. If n is even, then reversed
(86) holds, while if n is odd, then inequality (36) holds.

4. RELATED INEQUALITIES FOR n-CONVEX FUNCTIONS AT A POINT

In this section we give related results for the class of n-convex functions
at a point which is introduced in [6].

Definition 4.1. Let I be an interval in R, ¢ a point in the interior of I and
n € N. A function f : I — R is said to be n-convex at point ¢ if there exists
a constant K such that the function
K
Flx) = f(x) — n—1
(@)= 1) - gy

is (n—1)-concave on IN(—o0, ¢| and (n—1)-convex on I'N[c, 00). A function
f is said to be n-concave at point ¢ if the function —f is n-convex at point
C.

It is known that a function is n-convex on an interval if and only if it is
n-convex at every point of the interval. Necessary and sufficient conditions
on two linear functionals A : Cla,c¢] — R and B : C[c,b] — R so that the
inequality A(f) < B(f) holds for every function f that is n-convex at ¢ are
studied in [6]. In this section we give inequalities of this type for particular
linear functionals related to inequalities obtained in the previous section.

Let e; denote the monomials e;(x) = 2%, i € Np. First we state our main
theorem of this section for the discrete case.

Theorem 4.2. Let ¢ € (a,b), x € [a,d™, y € [¢,b]!, p € R™, q € R and
f i [a,b] = R be a function such that F=1 s absolutely continuous.
(i) Ifk = 1,2 let AL f) and QU 5) be defined as in (10)-(13)

and satisfy the following conditions:

(37) QE:’C](m,x, p,s)> 0, for every s € [a, ],
(38) ngb](l? Y. q, ‘5) 2 07 fOT' every s € [Cv b}?
and
(39) Al x,p,en) = A1y g e).

If f is (n+ 1)-convex at point ¢, then
(40) ALY mx,p, ) < ANy, a, f).

If inequalities in (37) and (38) are reversed, then (40) holds with the reversed
sign of inequality.

(ii) If k = 5,6 let AEC'"](-, o f) and QL"‘](~7 -+, 8) be defined as in Theorem
3.2 and let assumption (81) holds. For k = 5, if (37), (38) and (39) are
valid, then for an (n + 1)-convex function f at point ¢, (n > 3), inequality
(40) holds. For k =6, if (39) holds and reversed (37), (38) are valid, then
inequality (40) holds.
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Proof. (i) Let k € {1, 2} and (37), (38), (39) hold. Since f is (n+ 1)-convex

K
at point ¢ there exists a constant K such that the function F' = f — —€n is
n!

n-concave on [a, ¢| and n-convex on [c, b].
Applying Theorem 2.3 to F on the interval [a, ¢] and on the interval [c, b]
we have

AL x.p, F) <0< A1y, q,F).
Using definition of F’ we obtain that

~ K ~ K e
AE:7C] (Tfl, X, P, f) - HALG’C] ("Lv X, P, en) S AL‘CJ]] (l7 y.q, f) - HAE; ° (l7 y.q, en)

K
A m . ) < AP Ly, @ )= | ALy s en) = A0 (m,x Dy en)|.
Since equality (39) is valid we get
A, x,p, ) < A1y, g, ).
O

Remark 4.3. A closer look at the proof of Theorem 4.2 gives us that similar
result holds if instead of equality (39) we consider the condition

K (Ag’b] (l7 Y7 q7 671) - AL?C](/"L?X? p7 en)) 2 0
Corollary 4.4. Let j1,jo,n € N, 2 < j1,j2 < n and let f : [a,b] — R be

(n + 1)-convez at point c. Let m-tuples x € [a, c]™ and p € R™ satisfy

l
> piak =0, forallke{0,1,... j1—1}
i=1

!
Zpi(wi — s)]ﬁfl >0, for every s € [a, (]
i=1
and let I-tuples y € [c,b]' and q € R! satisfy

l
Zqiyf:(), forallk €{0,1,...,jo—1}
i=1

!
> ailyi— sY271 >0, for every s € [c,b]
i=1

and let identity (39) holds.
Then

ALY m,x,p, ) < ALy, a, 1)
and if n — j1,n — jo are even, then
A5 m,xp, ) < A7 Ly a, 0).
Proof. Since f is (n + 1)-convex at point ¢ there exists a constant K such

that function ' = f— —e, is n-concave on [a, c| and n-convex on [c, b]. The
n!
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number j; and m-tuples x, p satisfy the assumptions of Theorem 2.4 and
for concave F' on [a, ¢] we get

A¥(m,x,p, F) <0.
Also, the number js and [-tuples y, q satisfy the assumptions of Theorem
2.4 and for convex F on [c¢, b] we get
APy, q.F) > 0.
Hence
AP (m,x,p, F) < A1y, q, F)
which is equivalent to

. K ~ K e
Al x p, f) —n—,A[{l’d (m.x,p,en) < A1y, q, f)—n—,A[f’b] (,y,q, en)

and using condition (39) we get the desired inequality. The second statement
is proved in the similar manner. O

Integral analogues of the previous theorem may be stated as:
Theorem 4.5. Let « < B,7v<4d,a<c<b,g:|a, ] = [a,d, p:a,f] =
R, h:[y,d8] — [¢,b], q: [v,d8] — R be integrable. Let f : I — R, [a,b] C I, be
a function such that f=1 is absolutely continuous.

(i) If k = 3,4 let AL"'](', - f) and QEC"'](7 -+, 8) be defined as in Theorem
2.7 and satisfy the following conditions:

(41) ([, B, 9.p.5) = 0, for every s € [a, ],
(42) Q([y,6],h.q,5) > 0, for every s € [¢,b],
(43) A (e B, g, poen) = AL ([, 0,1, g 00).

If f is (n+ 1)-convez at point c, then

) . ,b .

(44) AN (o 8L, 9.p. 1) < AL, 6) hoa, f).
If the inequalities in (41) and 42 are reversed, then the reversed sign in (44)
holds.

(ii) If k = 7,8 let AL"‘](~7 - f) and QL"‘]('7 ..+, 8) be defined as in Theorem
3.4 and let assumption (34) holds. For k =7, if (41), (42) and (43) are
valid, then for an (n + 1)-convex function f at point ¢, (n > 3), inequality
(44) holds. For k =8, if (43) holds and reversed (41), (42) are valid, then
inequality (44) holds.

Corollary 4.6. Let j1,jo,n € N, 2 < j1,jo <mn, let f : I - R, [a,b] C I, be
(n + 1)-convex at point c, let integrable p : [a, 8] — R and g : [a, 8] — |[a, c]
satisfy (5) with n replaced by j1, let q : [y,6] = R and h : [v,0] — [c,b]
satisfy

)
/ q(x)h*(x) =0, forallk €{0,1,...,jo—1}
Y

/5 q(x)(h(z) — s)ffldaz >0, forevery s € |[c,b]
.
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and let (43) holds. Then

A5 (0.8 9.0 1) < AL ([3.0).heq. D).

If n — j1 and n — jo are even, then

AL (o, 81, 9.0, 1) < ALY, 0], hog, £

5. BOUNDS FOR AEC'"}(-, -+, f) AND Rk

In this section we give several estimations connected with the functionals
AEC'"](~, o f), ke{l,...,8}. We use the well-known Holder inequality and
bound for the Cebysev functional T'(f, h) which is defined as:

b b b
T(f,h) = ﬁ / f(a;)h(;v)dw—ﬁ / F2)dx / h(z)da.

This bound is given in the following proposition in which the pre-Griiss
inequality is given.

Proposition 5.1. ([3]) Let f, h : [a,b] — R be integrable such that fh €
L(a,b). If

vy < h(z) <T for z€la,bl,
then

T W] < (T =DV D).

Now by using the aforementioned result, we are going to obtain formula for

AEC'"] (v, -, -, f) and estimations of remainders which occur in this formula. For
the sake of brevity, in the present and next two sections we use the notations

Ap(f) = ALy and Qi) = QUL ) for k€ {1,2,...,8}. Now,
we are ready to state main results of this section.

Theorem 5.2. (i) Let k € {1,2,3,4}. Let f : I — R, [a,b] C I, be such
that =1 is an absolutely continuous function and

< fM(x) KT for x € [a,b].
Then

(45) A(f) = Qi(s)ds + Ry (f;a,b),

) - )
(n=1I(b-a) /

a

where the remainder RE(f;a,b) satisfies the estimation

(46) IRA(f00)] < 5550 =)V T30

(ii) Let k € {5,6,7,8}. Let assume that condition (31) holds if k = 5,6,
or condition (34) holds if k =17,8.

If assumptions of (i) hold with n > 3, then (45) and (46) hold with (n—3)!
instead of (n —1)! in the denominator of Ar(f) and in the bound for RE.
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Proof. Fix k € {1,2,3,4}. Using the definition of Aj and results from the
second section we have

An(f) = /f )(5)0(s)

T -Dl(b—a) / i /b Qp(s)ds + Ry (fa,b)

n—1 n 1 b
[f (n (_b)l)!(f_a) )]/ Qi(s)ds + RE(f;a,b),

where

RE(f1a,b) = n_1</f m&w———/f @%/QAM>

Applying Proposition 5.1 for f — €, and h — f("), we obtain

b—a
ko f. = (n) < - - —
‘Rn(jaa»b” |T(Qk7f | = 2(71— 1)|(F ’7) T(ka Qk)
The proof for k € {5,6,7,8} is done in a similar manner. ]

Using the same method as in the previous theorem and other type of
bounds for the Cebysev functional we are able to give another estimation for
a remainder. Now we state some Ostrowski-type inequalities related to the
generalized linear inequalities. As usual, by symbol Ly[a, b], (1 < p < 00),
we denote the space of functions f on [a, b] with the property

1£1,, = (/ablf(t)pdt>% < .

Theorem 5.3. (i) Let k € {1,2,3,4}. Let (q,r) be a pair of conjugate
exponents, i.e., 1 < q,r < o0, %Jr% =1. Let f™ € L,[a,b] for somen > 2.
Then

(47) AN < 5717 g 1921,

(n—1)! 1)'

The constant on the right hand side of (47) is sharp for 1 < g < oo and
the best possible for g = 1.

(ii) Let k € {5,6,7,8}. Let assume that condition (31) holds if k = 5,6,
or condition (34) holds if k =17,8.

If assumptions of (i) hold with n > 3, then the statement holds with
(n —3)! instead of (n — 1)! in the denominator of the bound for Ay.

Proof. Fix k € {1,2,3,4}. From the definition of Ay and results from the
second section, applying the Holder inequality we get

[Ak(f)] = ’ﬁ/ F(8)Qp(s)ds

Let us denote the quotient ey ) :Qk by A\g. For the proof of the sharpness

< 17 g e,

of (fa Ak ()] dt) v , let us find a function f for which the equality in (47)
is obtained.
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For 1 < g < oo take f to be such that
FO () = sgn Ae(®) - [Ak(0)[V 1.
For ¢ = oo, take f such that

FO () = sen Ak(t)-
The fact that (47) is the best possible for ¢ = 1 can be proved as in [2, Thm
12]. Proof for k € {5,6,7,8} is done in the similar manner. O

6. MEAN VALUE THEOREMS AND EXPONENTIAL CONVEXITY

In this section we give several mean-value theorems and apply a general
method for obtaining new exponentially convex functions related to the func-
tionals Ay defined in previous sections. As we said in the previous section
we use notation Ag(f) = AL”'](-, o f) ke {1,...,8} where AEC'"](-, k)
is defined in the second and third sections. Since theorems in this section
contain results for K = 1,...,8, we use this agreement throughout this sec-
tion: if k € {1,2,3,4}, then n € N; if k € {5,6}, then n > 3 and (31) holds;
if k € {7,8}, then n > 3 and (34) holds.

Theorem 6.1. Letk € {1,...,8} and let us consider Ay as a functional on
C™[a,b]. If (Ug) holds, then there exists & € [a,b] such that
(48) Ar(f) = (&) Al o),

where fo(x) = Zr.
Proof. Since f™ is continuous on [a, b], so f([a, b]) = [L, M], where L =
min (" (z) and M = max f(z).
z€[a,b)] z€la,b]
Therefore the function

F(2) = M2 @) = Mfo(a) = 1(2)
satisfies F(")(z) = M — f)(x) > 0, i.e., F is n—convex function. Hence
Ag(F) > 0 and we conclude
AR(f) £ M Ag(fo).

Similarly, we have
LAk(fo) < Ax(f).
Combining these two inequalities we get
LAk(fo) < Ak(f) < MAk(fo)-
If Ax(fo) =0, then Ag(f) =0 and the statement (48) obviously holds.

If Ax(fo) # 0, then jk((]{)) € [L, M]. Hence there exists £ € [a, ] such
k(Jo
A(f) ) : ,
that o) FY (&), i.e. the statement of the theorem is proved. O
k(o

Theorem 6.2. Let k € {1,...,8}. Let f,h € C"[a,b]. If (Ux) holds, then
there exists &, € [a,b] such that

Ae(f) (&)

A(h) ~ W0V (g
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assuming that both denominators are non-zero.
Proof. Fix k € {1,...,8}. Let w be defined as
w=Ar(h)f — A(f)h.
Since w € C™[a, b], using Theorem 6.1 there exists & such that
Ap(w) = W™ (&) Ak (fo)-
Obviously, Ag(w) = 0 and w™ (&) = Ag(h) f™ (&) — AR (f)h™M (&x). So
Ax() £ (&) = A(HR™ (&) =0
which gives us the required result. O

Remark 6.3. If the inverse of ﬁ%)- exists, then for k£ € {1,...,8} from the
above mean value theorem we can define generalized mean

-1
Fm Ar(f)
49 == .
(49) &k <h(n) An(h)
6.1. Exponentially Convex Functions. In the present subsection, we
pay attention to the concept of exponential convexity and how our results

generate new classes of exponentially convex functions. Let us recall related
definitions and some important results from [1] and [5].

Definition 6.4. A function f : I — R is n—ezponentially convex in the
J—sense if the inequality

n
i+
> wiusf < l J) 20
“ 2
1,7=1
holds for each t;,t; € I and w;,u; € R, i,5 € {1,...,n}.
A function f : I — R is n—exponentially convez if it is n—exponentially
convex in the J—sense and continuous on I.

Remark 6.5. We can see from the definition that 1—exponentially convex
functions in the J—sense are in fact nonnegative functions. Also, n—expon-
entially convex functions in the J—sense are k—exponentially convex in the
J—sense for every k € N such that k& < n.

Definition 6.6. A function f : I — R is exponentially convex in the
J—sense, if it is n—exponentially convex in the J—sense for each n € N.

A function f: I — R is exponentially convex if it is exponentially convex
in the J—sense and continuous on I.

Here, we get new results concerning the n—exponential convexity and
exponential convexity for functionals Ay, k € {1, ..., 8} defined in the second
and third sections.

Theorem 6.7. Let Dy = {f; : t € I} be a class of functions such that the

function t v~ [z0, 21, ..., 2n; ft] is r—exponentially convex in the J—sense
on I for any mutually distinct points zg,21,...,2, € [a,b], n > 2. Let
ked{l,...,8}.

If condition (Uy) holds, then the following statements are valid:
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(a) The function t — Ag(f) is r—exponentially convex function in the
J—sense on I.
(b) If the function t — Ag(f;) is continuous on I, then the function
t— Ag(fi) is r—exponentially conver on I.
If the phrase “r—exponentially convez” is replaced with ”exponentially con-
vex”, then statements also hold.

Proof. (a) Fixk € {1,2}. Let us define the function w for t;,t; € I, w;u; €
R, 4,5 €{l,...,r} as follows

r
w = E Ui Uy 'ti+tv,
2

i,5=1
Since the function t — [z0, 21, - . ., 2n; fi] is 7—exponentially convex in the
J—sense, therefore
,
(20,21, - - -, 23 W] = 5 uiuf[20, 21, - - -5 205 frivy; ] >0
S 2
i,j=1

which implies that w is n—convex function on I and using Theorem 2.3 we
get Ap(w) > 0. Hence

,
Z uiu]‘Ak(ftiﬂ,z») > 0.
i,j=1 :
We conclude that the function ¢ — Ag(f;) is an r—exponentially convex
function on I in J—sense. Other cases are proved in a similar manner.

(b)  This part easily follows from definition of n—exponentially convex
function. O

Remark 6.8. Condition "Dy = {f; : t € I'} be a class of functions such
that the function ¢ — [2q, 21, . - ., 2p; fi] is r—exponentially convex” can be
replaced with ” Dy = {f; : t € I'} be a class of n-time differentiable functions

such that the function ¢ +— ft(") is r—exponentially convex”.

As a consequence of the above theorem we give the following theorem
which connects Ay with log-convexity.

Theorem 6.9. Let Dy = {f; : t € I} be a class of functions such that the

function t v« [z0,21,...,2n; ft] is 2—exponentially convex in the J—sense
on I for any mutually distinct points zg,21,...,2, € [a,b], n > 2. Let
ke{l,....8}.

If condition (Uy) holds, then the following statements are valid:

(a) If the function t — Ag(f:) is positive continuous, then it is log-
convex on I. Moreover, the following Lyapunov type inequality holds
forr<s<t r s tel

(50) AR < (ARG LAl

(b) If the function t — Ag(f:) is positive and differentiable on I, then

for every s, t,u,v € I such that s < u and t < v, we have

(51) Ns7t(Ak7 DQ) < ,Ufu,v(Alc» D2)
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where s is defined as

1
AI\ (fs) S—t
9 b # t’
(52) tis,t (A, D2) = (A* (fi)Ak(fg)
exp (‘;‘Ak(fs) ) s=t

fOT fs»ft € DQ'
Furthermore, if r,ry,...,ry,r+ri, ..., r+r,r+ri+...+r €1,
then

(53) A" A (frgriar) = A(fram) oo A fram)-
Particularly, if 0 € I, then we get the Cebysev type inequality
Ar(fo)"  Ak(friar) = A fr) - Ar(fr)-
Proof. (a) Applying Theorem 6.7 for r = 2 we get that ¢t — Ag(f;) is 2-
exponentially convex in J—sense i.e. for any t1,t2 € I, uj,us € R

G A(fo) + QUWQAk(f@) + u3A(fi,) > 0.

If we consider the left-hand side as a nonnegative quadratic polinomial, then
its discriminant is nonpositive, i.e.

[Alc(f'#)P — Ap(fey) - Ar(fy) <0.

This means that ¢t — Ag(f;) is log-convex in J—sense. From continuity we
conclude that ¢t — Ag(ft) is log-convex. Using the Jensen inequality for

convex combination s = i:f T+ $=-t we get

. t
log Ax(f,) < =

log[ Ak (f)]'™" < log[Ar(fr)]'™* + log[Ax(f)]* ™,
which gives (50).
(b) For a convex function ¢, the inequality
pls) = v _ wlw) = p(v)
s —t - u—v
holds for all s,t, u,v € I such that s < wu, t <wv, s #t, u#v.
Since by (a), Ag(fi) is log-convex, so setting (t) = log Ax(fi) in (54) we

S

S
log Ar(f,
" 0og k(fr)+ m

— log A (f)

(54)

have

(55) log Ak(fs)s - iog Ax(ft) < log Ak(fgL)L - }Jog Ak(fv)7

for s <w, t <w, s#t, u+# v, which is equivalent to (51) i.e. to
Ar(f )\ _ (A(fu)\ 7

(%) Gen) ™ = Gay) ™

The cases for s = ¢ and / or u = v follow from taking respective limits.
Puttingin (56) t=v=r,s=r—+r1+...+r, u=r+r; we get

(M>— . (Akum))%

Ag(fr) Ar(fr)
(M)#V, < A (frr:)
Ak(fr) = A(f)
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Multiplying all the inequalities for i = 1,2,...,1 we get (53). |
Let us consider some examples:

Example 6.10. Let Fy = {¢; : [a,b] CR — [0,00) : t € R} be a family of

functions defined by
etz
e t#0
) — o )
i) { I, t=0.
Since %’%(@ = ¢!®, the function t — %’%(@ is exponentially convex
(see [1]). Using Theorem 6.7, we have that ¢t — Ag(«y), k € {1,...,8} are
exponentially convex.

Assume that ¢ — Ag(y) > 0 for k € {1,...,8}. By introducing convex
functions 4 in (49), we obtain the following means:

Ay () )
%tlog(Alw,)) , sFL

Mo(Ap, 1) = § S —n =20,
Ap(id-1po) s=1t=0
(1) Ak (V) o

where id stands for identity function on [a,b] C R. In particular for k = 1
we have

k_sa

n Z 1pie Z_Zn 1s e zmlPT x,—a
st(A1,F1)— log(snzlmlpet sy WL tazfnlp o) )’ s#£t;s,t#£0;
3 4 i\ T
n—1 (Iml‘ 1+as )em m k
pix; e’ 7—2 72 pi(zi—a)
SD/ts,s(Ah Fl) = Zizl =1 - %, S 7é 0;

k
E:TLIIL 6“”7—2“ > 2 P’m Zznll% 391_@)1‘
1 +1 n k+1 )
S P —z:’ omwzi L pilwi—a)k

(n+1)(z1 1p1 nl Z;, =0 m21 1p7 27_('1);‘) .
Here M (Ax, F1) = log(us,(Ax, F1)), k € {1,...,8} are in fact means.

Mo o(Ar, F1) =

1

Mo

d7ys '\ s—t
Remark 6.11. We observe here that (dnw > (log&) = ¢ is a mean for

dz™
¢ € [a,b] where a,b € Ry.
Example 6.12. Let n € N, Fy = {p; : [0,00) = R:¢t € R;t > n} be a
family of functions defined as

J,‘t

wt(w):t(t_l).,,,.(t—nﬂ)'

Since t — Lopy(z) = 2t = elt=182 i exponentially convex, by
Theorem 6.7 we conclude that ¢t — Ag(¢y), k € {1,...,8} are exponentially
convex.

We assume that Ag(p;) > 0 for k € {1,...,8}. For this family of convex
functions we obtain the following means:

AA(‘PS) t
Auled s#£t
ms,t(Ah FQ) = (Ak((ﬁf,)) s .

exp ((—1)"‘1(n - )‘A‘Efffgg + >z k;) s =t.
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In particular for £ = 1 we have

1
_ [ tt=1)(t—n+1) 2, pix)\s—t
M1 (A1, Fo) = (3(371;444((s::z+1)) 242'1:1 g,zf) s F L

M pixiS logx; -
ms,S(A17 F2) = exp (Zilyzlzpi rj)‘;gx + Zz:é ﬁ) .

For other examples see paper [1].
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