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GENERALIZATIONS OF SHERMAN’S THEOREM BY
MONTGOMERY IDENTITY AND NEW GREEN
FUNCTIONS

M. ADIL KHAN, JAMROZ KHAN, AND J. PECARIC

ABSTRACT. In this paper, we give generalization of Sherman inequality
by using Green functions and Montgomery identity. We present Griiss
and Ostrowski-type inequalities related to generalized Sherman inequal-
ity. We give mean value theorems and n-exponential convexity for the
functional associated to generalized inequality. We also give a family of
functions which support our results for exponentially convex functions
and construct a class of means.

1. INTRODUCTION

We start with the concept of majorization which is exactly a partial or-

dering of vectors and determines the degree of similarity between the vector
elements.
For fixed m > 2, let x = (z1,..., ) and y = (y1, ..., ym) denote two m-
tuples. Let Ty 2 T 2 e 2 Ty and v 2 Y = - 2 Yim) be their
ordered components. We say that x majorizes y or y is majorized by x and
write y < x if

a ul m m
(1) Zy[i] < Zx[i], kE=1,....m—1, and Zyi — le
i=1 i=1 P —

A notation from real vector space may be extended to real matrices. Let

M (R) denotes the space of m x [ real matrices. A matrix A = (a;;) €
M (R) is called row stochastic if all of its entries are greater or equal to
zero and the sum of the entries in each row is equal to 1. A square matrix
A = (ai5) € Myy(R) is called double stochastic if all of its entries are greater
or equal to zero and the sum of the entries in each column and each row is
equal to 1.

The Majorization theorem due to Hardy et al (1929 [12]), gives connections
with matrix theory (see also [17, p. 333]). For more detail see [3], [4], [5],
[6] and [14].

Theorem 1.1. Letx,y € R"™. Then the following statements are equivalent.
(i) y <x;
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(ii) There is a doubly stochastic matriz A such that y = xA;
(iii) The inequality Z o(yi) < Z ¢(x;) holds for each convex function
i=1 i=1
6:RoR. '

S. Sherman ([15], [20]) obtained the following general result.

Theorem 1.2 (Sherman’s theorem). Let [, 3] C R and for fized I,m €
Ni,m>2 letx € [a,f], y € [o, ™, u e 0,00), v E0,00)" and

(2) y =xAT andu=vA

for some row stochastic matriz A = (a;j) € Mp(R). Then for every convex
function ¢ : (o, f] = R we have

m l

(3) Z'Uq¢(yq) < zup(ﬁ(l'p)-

q=1 p=1

Sherman obtained this useful generalization replacing the classical con-
cept of majorization y < x by the notion of weighted majorization (2)
for two pairs (x,u) and (y,v), where x = (z1,...,7;) and y = (y1, -, Ym)
are real vectors and u = (uy,...,u;) and v = (vy, ..., vp,) are corresponding
nonnegative weights. Here AT denotes the transpose of of a matrix A. In
particular for m =1 and w, = v, for p,q = 1,...,m, the condition u = vA
assure the stochasticity on columns, so in that case we deal with doubly
stochastic matrices. Then, as a special case of Sherman’s inequality, we get
the weighted version of majorization’s inequality:

Zup¢(yp) < Zupd)(*rp)
p=1 p=1

m m
Denoting U,, = ) up and putting y1 = y2 = ... = ym = % > upxy, we
p=1 p=1
obtain Jensen’s inequality in the form
m 1 m
(,b Z UpTp S U_ Z Up(f) (.1777)

Now we recall the definition of n—convex function which we will use in the
rest of paper.

Definition 1. The divided difference of order n, n € N, of the function
¢ : (o, B] = R at mutually different points xg, 1, ..., 2n € [, 3] is defined
recursively by

[zi; 8] = d(xi), i=0,..,n
[‘1"17 7‘Ln7¢] - [LL'(), ~~~s$n—1;¢]
Ty — X0 ’

[0y ooy Tn; B] =

The value [xo, ..., xn; @] is independent of the order of the points xg, ..., Ty,
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This definition may be extended to include the case in which some or all
the points coincide. Assuming that ¢U=1(z) exists, we define

A C))

j-times
The notion of n—convexity was defined in terms of divided differences by
Popoviciu [18]. A function ¢ : [a, 3] — R is n—convex, n > 0, if its nth
order divided differences [zg, x1, ..., T,,; §] are nonnegative for all choices of
(n+1) distinct points x; € [o, 8], @ =0,...,n. Thus, a 0-convex functions is
nonnegative, a 1-convex functions is nondecreasing and 2-convex functions

is convex in the usual sense. If ¢(™) exists then ¢ is n—convex if and only if
#™ >0 (see [17] ).

In our main results of this paper, we will use the following generalized
Montgomery identity.

Theorem 1.3 ([8]). Letn €N, ¢: I — R be such that ¢~V is absolutely
continuous, I C R an open interval, o, 3 € I and o« < 3. Then the following
identity holds

(k+1) k2
é(z) = 1 /¢(fdf+z(i‘k+(2))(xﬂf)a _

—92 .
¢(k+1) (B) (z - B k+2 1 s )
(5) /;) kl'(k+2) m,B_)a + (n—l)!/a T (z,5) 6™ (s) ds,

where
(( )5+£ "‘(I—s) 1oa<s<u,
(6) Tn (1:73) =
(g(c_s)) +B—ﬁ(:c—s) 1oz <s<B
-2
In case n = 1 the sum Z . is empty, so the identity (5) reduces to the

k=0
well-known Montgomery identity

6 () =ﬁ./jqﬁ(t)dtﬁ—'/(:QP(z,g)Qy(S)ds,

where P (x,s) is the Peano kernel, defined by

oy asSs<u,

P(x,s) =

Eiﬁ, r<s<p.

2. MAIN RESULTS

In this paper we will use the following Green functions defined on [a, 8] x

[, B] by

a—S a<s<t;
7 Grlt,s) = P =0T
0 1(t:s) {a—t, t<s<B.
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t—pf, a<s<t
8 t,s) =
(8) Galt,s) {8_6, oiss
t—a a<s<t
9 t,s) = oo T
() G3(as) {S—Ol, t§8<,3

_ ﬁ_sa a<s<t
(10) G4<t,s>—{ﬁ_t7 Csy

All these four functions are continuous convex with respect to ¢. The graph

” o9

of these functions for fix ”s” are given below.
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Lemma 2.1. For every function ¢ € C?([a, 3]), the following identities are
valid

B8
(11) (1) = dla) + (t — a)§'(B) + / Gi(t, 5)" (s)ds,

B8
(12)  6(t) = (8) + (t - B)d/(a) + / Ga(t, 5)6" (s)ds,
5
(13)  6(t) = 9(8) + (t = )6/ (0) = (- )&'(8) + / Gs(t, 5)" (s)ds,

8
(14)  o(t) = ¢(e) = (B—)¢'(B) + (B — a)¢' () +/ Gu(t, 5)¢" (s)ds,

where the functions Gy, w € {1,2,3,4} are defined as above in (7), (8), (9)
and (10) respectively.
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Proof. Using the techniques of integration we have

B8 t B8
/ Gg(t,s)qb”(s)ds:/ Gg(t,s)¢”(s)ds+/t G3(t,s)¢"(s)ds
_ /‘t(t —a)¢(s)ds + / (5 — )" (s)ds
B
— (t - )G+ (s - )F ()] - /t & (s)ds

8
N / Ga(t, 5)¢" (s)ds = (t — ) (t) — (t — a)/(a) + (B — a) #(B)

—(t=a)¢(t) — 8(B) + (1),

which is equivalent to (13).
Analogously, we can prove other three identities. O

We sate our first main result in the following theorem.

Theorem 2.2. Let [, 5] C R and for fited ,m € N, I;m > 2 let x =

(‘rla"':ml) € [a7ﬁ]lv y = (ylv"'vym) € [avﬁ]m: u = (’LLl,...,’LL[) € Rl:
v = (v1, ..., vm) € R™ be such that (2) holds for some matrizc A = (a;;) €

!
M (R) satisfying the condition Y a;; =1, i = 1,2,...,m. Then the fol-
j=1
lowing statements are equivalent:
(i) For every continuous convex function ¢ : [, B] — R, we have
m l
(15) > ug(yg) <D updlap).
g=1 p=1
(ii) For all s € [, 3], we have
m l
(16) quGw(yq,s) < Zquw(ccp,s), where w = 1,2, 3, 4.
q=1 p=1
Proof. We give the proof only for w = 3, for other they are similar.

(i) = (ii): Let (i) holds. Let us consider the Green function G3 defined
by (9). Since the function G3(.,s), s € [«, 3], is continuous and convex on
[av, B], therefore (15) holds for Gs(., s).

(ii) = (i): Let (ii) holds. Since every function ¢ : [o, 8] — R, ¢ €
C?%([a, B]), can be written in the form (13). Therefore by some simple cal-
culations, we deduce

m

l 3 l m
(17) Z“p¢(~%) - Z"’q¢(yq) = / Z upGs(zp, s) — Z 04G3(yq, 5) | ¢"(s)ds.
p=1 p=1 q=1

g=1 @

Since ¢ is convex, therefore ¢”(s) > 0 for s € [o, 8]. Furthermore, if for
every s € [a, 8] the inequality (16) holds, then we have the right hand side
of (17) is non negative and hence (15) holds. O

In the following theorem we give general identities for Sherman’s inequal-
ity.
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Theorem 2.3. Let n € Nyn >4, ¢ : I — R be such that ") is abso-

lutely continuous, I C R an open interval, o, 3 € I, a < 3. Suppose that

X = ('1:17"'7"'El) E [a7 /8}l7 y = (yl""’ynl) E [a7 /B]m7 u = (u17"'7u1) E Rl’

v = (v1, ..., vm) € R™ be such that (2) holds for some matrizc A = (a;;) €

I

M (R) satisfying the condition Y a;; = 1, i = 1,2,..,m. Let Gy, w =
j=1

2,3,4, and T, be as defined in (7), (8), (9), (10) and (6) respectively.
Then we have the following identities.

(i)
l m ] l m
Z upd’(zp) - Z qu)(yq) = / Z Upr(xpv t) — Z 'Uqu(yq: t)]
p=1 ¢=1 ¢ |p=1 q=1
k(W () - - e (8) (- B
X ; K= 1) ( 5—a dt
B B l m
R = Gl = 3 0G| Toca )9 (6 ot
where

A B - -9, a<sst,

(19) Tuo(ts)=d

f—a n

A [l -py -], t<s<p

(ii)
' U 1U2 " vgy2
Zupq’)(;cp) — qu¢(yq '(B) _a( @) |:Zp 1 Up . qul qu}
/ ZuPG (xp,t) — qu (ygrt ]
"i /]::12)' <¢(k s a)k_; - z(k) B (t— ,3)H> dt
; !
(20)

1 B8 rB 1 m
- _ (n)
+ (n — 3)! /a /X L; UPG“’(xP’ t) q; UQGW(yqa t)] Ty 2 (t, 8) o) (8) dsdt.
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l
Proof. Fix w = 1,2,3,4. Using (11), (12), (13) and (14) in Y up¢(xp) —

p=1
i vep(yy) and applying (2), we obtain
q=1
l m
Zup¢(xp) - qu¢(yq) = / Zup (zp,t) — Z“q (Yq, t)] " (t)at,
p=1 q=1
(21)

(i) Differentiating (5) twice with respect to ¢ and rearranging the terms, we

get
v~ k(6B () (t— ) — o) () (1 — B)

—

B
(22) +ﬁ / Toa (t,5) 6™ (s) ds

Substituting (22) in (21) we obtain (18).

(ii) Replacing ¢ by ¢” and then n by n — 2 in (5), we have

4 n—4
’ 0% (@) (=)t =0 (9) (- B)"
57 /¢(tdt+zk‘(k+2 B—a _,;k!(km) B—a

1 B
+ m / Tn,Q (t, S) ¢(n) (S) dS,
) 'Ja
this implies that

y ¢'(5 ¢'( k=2 [¢W(a)(t—a)"" =W (B)(t—p)""
o) = Z(k—l)!( B—a )

(23)
1 B .
+m/a T2 (t,s) o™ (s) ds.
Using (23) in (21)’ we get (20)
O

Now we present the generalization of the Sherman theorem by using the
above obtained identities.

Theorem 2.4. Suppose that all the assumptions of Theorem 2.3 hold. Let
for any even n the function ¢ : I — R is n-convexr and

l m

(24) Zquw(wpvt) - Z/Uqu(y(I? t) 2 07 fOT w = 17 27374'

p=1 q=1

Then the following inequalities hold:
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(i)
l m
ZupqS(:vp) - qu¢(yq) 2 / Zup (2p,1) — qu w(Yq: t)
p=1 q=1 a=1
(25)
"i (oW (@) -a)" =W @) -p"")
= (k- 1)! B -« '
(ii)

l

: m , X
Zup¢(zp) — Z Uq¢(yq) > ¢ (5ﬁ) : ZS (o) [p=1 P
p=1 g=1

m 9
T — > VY
q=1

2 ]

Bt s
+ / 3 w0 Gulzpt) = Y 0,Gulyg:t) | %
« p=1 q=1

n—1 - )
(26) Z —2 (d’(k) (a) (t— @)1 = ¢®) (B) (t — B)F 1> "

k:3 p-a

Proof. (i) Since the function ¢ is n-convex so we have ¢(™ > 0. Also it
is obvious that if n is even then T;,_s > 0 because

Case I If o < s < ¢, thent—sEOandhence%zo.

Also (t —a) > 0 and (t — )" % > 0. So in this case from (19) we

have T, _2 > 0.

Case IL: If t < s < 3, then (t — 5)" % and (s — f3) are non p0s1t1ve
As n is even so we have (s — B)(t — )" 3 > 0, also ) > 0. So
in this case from (19) we have T > 0.
Now using (24) and the positivity of T},_o and ¢(™ in (18) we get
(26).
(ii) The proof is similar to the proof of part (i).
O

In the following theorem we prove generalization of Sherman’s theorem
for positive weights.

Theorem 2.5. Let n € Non > 4, ¢ : I — R be such that $"V) is ab-
solutely continuous, I C R an open interval, o, € I, a < B. Let x =
(z1,22, ., 21) € [0, 8",y = (1,92, -, ym) € [, B, w = (u1,uz, ..., w) €
[0,00)" and v = (v1,v2,...,0) € [0,00]™ be such that (2) holds for some
row stochastic matriz A = (ai;) € Mp(R). If n is even and ¢ is n-convex

function, then (25) and (26) hold. Moreover, if (25) and (26) hold and the

5
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functions define by

B nl ®) () (f — )L — k) k-1
0= [ G, t)xz(kkl)!<¢ (o) (=) 6 (8) (t= ) )dt’

k=2 p-a

/ — ‘2 15
1) = 2O=EL L [

o (k) okl (k) kel
I;) (]]:, 12)| <¢ (@)t~ o) 3 73: B)t=F) > dt, where, w=1,2,3,4,

are convez on [, B8], then (3) holds.

Proof. Since the function G (.,t), w € {1,2,3,4}, t € [«, 3], are convex, so
by Sherman’s theorem it holds that

Z% xpyt)—qu (g t) >0, 1€ [a,B].

q=1

Applying Theorem 2.4 we obtain (25) and (26).

Since (25) holds, the right hand side of (25) can be rewritten in the form

l m
Z upLy(zp) — Z VL1 (yq),
p=1 q=1

where L; is defined by (27). Since L; is convex, therefore by Sherman’s
theorem we have

l m
Z up L (zp) — Z veL1(yq) >0
p=1 q=1

i.e. the right hand side of (25) is nonnegative, so the inequality (3) imme-
diately follows.
Similarly we may get (3) by using the convexity of Lo. O

3. GRUSS AND OSTROWSKI TYPE INEQUALITIES RELATED TO
GENERALIZED SHERMAN’S INEQUALITY

P. Cerone and S. S. Dragomir [10], considered Cebysev functional

B B 8
T(f9) = 5o [ 109t~ = [ s = [ glojar

for Lebesgue integrable functions f, g : [, 8] — R, proved the following two
results which contain the Griiss and Ostrowski type inequalities [2].
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Theorem 3.1. Let f : [a, 8] = R be Lebesgue integrable function and g :
[, B] = R be absolutely continuous with (- — a)(B —-)(¢')* € L], B]. Then

1 11 B , 2
(29) |T<f,g>sﬁT<f,f>|zﬁ(/a (2= )~ )l (o)

The constant == in (29) is the best possible.

Theorem 3.2. Let g : [, 8] — R be monotonic nondecreasing and f :
[a, B] = R be absolutely continuous with f' € Loo|a, B]. Then

B 00 < gy I [ @ o)

The constant % in (30) is the best possible.

Using previous two theorems we obtain upper bounds for the identities
related to generalizations of Sherman’s inequality.

To avoid many notations, under the assumptions of Theorem 2.3, we
define functions P, and P» from [a, ] to R by

P y(s :/ Zqu (xp, t) qu (yq,t ] n—a(t, s)dt,

(31) for, w=1,23,4.

8 l
Po.u(s) = / S )G (2, 1) qu (oo ) | Taoalt, s)dt,
« p=1
(32) for, w=1,2,3,4.
Theorem 3.3. Let n € Nyn > 4, ¢ : [a, 5] = R be such that o™ s

absolutely continuous with (- — a)(B — ) ("2 € Ll B], Praw, Pow, w =
1,2,3,4, be defined as in (31), (32) respectively. Then

(i) the remainders x'(¢; o, B) define by
l m
K¢ a, B) = Z upd(ap) — qu¢(yq)_
p=1 q=1
B l m
/ Z Up G (Tp, t) — Z 0gGw(yg, 1) | %
o p=1 q=1

3 . k . <¢<k> () (¢~ a)k—; - f“ (8) (¢t~ 5)k‘1> it
k=1 ‘" ’

¢(n—1)(5) _ ¢(n—1)(a) 3 .
oG J, Dl

satisfies the estimation

(33)
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(34) .
1/ 4. VB -« 2
|5 (5 0, B) < T3 —3

(ii) The remainder k*(¢; o, B) define by

(P Pl ([ 6= a3 - 916 07as)

[e3

/ | U 4=1YaYq
i) — Z%wm Z%mm (;imﬁz 221 ﬂ

1 m
> upGu(@p,t) = > vgGu(yg, t)] X
q=1

/ﬂ
a p=1

"Zl (k 2 («b“” () (¢ = o) — ¢ (B) (t - /3)’“) »

k—1)! [ -«
(35)
9" () — ()
(=3B -a) / s
satisfies the estimation
(36) .
(6s0 )| < A0 1P )l ([ (6= = 9l o))
Proof. (i) Comparing (18) and (33) we get
(37)
L n ¢V (B) — (m
W) = ot [ e - IO P gas
Applying Theorem 3.1 for f — P, g — #™ and using Cebyéev
functional, we get
B
‘ﬂ_ P1 w(8)™ (s)ds — ﬂ—;a/a Pro(s)ds - 5 / o™ (s
(38)
I / (s - (3= o (o)ds)

Therefore from (37) and (38) we get (34).
(ii) Proceeding similarly as in part (i) we obtain (36).
O

Theorem 3.4. Let n € Nyn >4, ¢ : o, 5] = R be such that ™) is mono-
tonic nondecreasing on [a, 8] and P, Pa, w=1,2,3,4, be defined as in
(31) and (32) respectively. Then
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(i) The remainder k' (¢; v, B) defined by (33) satisfies the estimation

(39)
P! oo [ _ (n—1) (n=1)(n ’ :
o 6:0,0) < penge | CZ DGO ETTO) g g2}
(i) The remainder x*(o; a,-ﬁ) defined by (35) satisfies the estimation
(40)
P! Moo [ _ (n—1) (n—1)
2(6;0,0) < prrele | CZ DGO IO _ gy g2}
Proof. (i) Since -
(41)
L7 0" V(B) — 6" V(o)
Ly = )™ (s)ds —
K’((baamg)_(n_?))!/a Pl,w(')¢ ()d (n—3)'([3—o¢)
Applying Theorem 3.2 for f — P14, g — #™ and using Cebysev
functional, we get
L[ () L[ LI e
= | P s = o [P 2 [To gas
(42)
1 B
o / _ _ (n+1)
< s Pl [ (=008 = 900D pas
Since
B B
/ (5 — a)(B — )pm D (s)ds = / 25 — (o + B)] 6 (s)ds
= (=) [0"D(8) + 6" V(@) =2 6D (B) — "D (w)].
Therefore, from (41) and (42), we deduce (39).
(i) Similarly we can prove (40). O

Here, the symbol L,[a,b] (1 < p < 00) denotes the space of p—power
integrable functions defined on the interval [a, b] equipped with the norm

b 5
16 [l,= ( / |(/>(t)|”dt> for all ¢ € Lyla,b),

and space of essentially bounded functions on [a,b], denoted by Lsla, b,
with the norm

| ¢ lloo=ess sup |o(t)].

t€la,b]

In the following theorem we present Ostrowski type inequality related to
generalizations of Sherman’s inequality.

Theorem 3.5. Let n € N.n > 4, (p,q) be a pair of conjugate exponents,
ie. 1 <pgq<ooandl/p+1/q=1. Letéo : [o,0] — R be such that
™" € Lla. B]. Let Py and Py, w = 1,2,3,4, be defined as in (31),
(32) respectively. Then the following inequalities hold.

/a TPy u(s)ds.
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(i)
l m B l m
Zuzﬂﬁ(%) - Z vgd(yq) — / [Z upGhy (2, 1) Z 04Gw(Yq: t)] X

p=1 q=1 « p=1
Z oW (@) (t =)' = oW () (1 - B)H i
(k —1)! e
< (n)
=5 |4 17l
The constant |[Pyw||, is sharp for 1 < p < oo and the best possible
forp=1.

(i)

2
Z(T]nzl vqu:|

' (B ) #(a) [ Xper wpry —
Z vq¢(yq —a |: 9

B L Ui
- / S Gl t) = S vgGunlyg.1) |
@ p=1 q=1

= k 2 ") () (t — )" — o™ () (t — p)F !

3

[ P2l

= H</>“

The constant || Py, is sharp for 1 < p < oo and the best possible

forp=1.

Proof. The proof is similar to the proof of Theorem 12 in [1]. O

4. MEAN VALUE THEOREMS AND EXPONENTIAL CONVEXITY WITH
APPLICATIONS

Motivated by the inequalities (25) and (26) under the assumptions of
Theorem 2.4, we define the linear functionals A4, and Ao, w = 1,2,3,4,

from C™([ev, B]) to R by

m

1
A1w(d) = Z upd(xp) — Z 0P (Yq)—
p=1 ¢=1

/ Zup w(Tp, ) — qu (Yg, ]
. (M (o) (t=a)* " =M () (¢ - 5)’“) i
1

— (k—1)! 8-«

(43)

507
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Ao w(d) = Z upd(xp) — qu¢(yq)
Zq:l Uflyq:|

_HB) - ¢'<a> [ZL Ul —
f—a 2

l

B
—/ Zquw(xp, qu (yg t) | %
O )

(44) "Z(k 2 <¢>(k) () (t = )"~ _qs(k)(ﬁ)(t_ﬁ)kl)dt.

k—1)! [ —«

Using the linearity of these functionals we derive mean-value theorems of
Lagrange and Cauchy type.

Theorem 4.1. Let ¢ € C™([er, B]) and Ay - C™([o, B]) = R, p € {1,2},
be the linear functionals defined by (43) and (44). Then there exists &, €
[, 8], w=1,2,3,4,p=1,2, such that

Ap(¢) = ¢(n) (fp,w)Ap,w(’P)»
where p(x) = L+

Proof. Similar to the proof of Theorem 4.1 in [13]. O

Theorem 4.2. Let ¢, € C™([o,]) and Ay @ C*([e, 8]) = R, w =
2,3,4,p = 1,2, be the linear functionals defined by (43) and (44). Then
there exists &, € [, B], w=1,2,3,4,p =1,2, such that

Apw(®) _ 8™ (&)
Ap,w(d’) 7/’(") (fp:w) "

provided that the denominators are non-zero.

Proof. Similar to the proof of Corollary 4.2 in [13]. O

Remark 1. If the function %(:—)} is invertible then by previous theorem we

can write
Epw = " 1( ()) p=12w=123,4
Py 1/)('”) Ap,w(w) ’ 9 4 9 Ay 9y

Applying Exponential convexity method [13], we construct some new fam-
ilies of exponentially convex functions or in the special case logarithmi-
cally convex functions. The outcome are some new classes of two-parameter
Cauchy-type means.

Through the rest of paper, I denotes an open interval in R.

Definition 2. For fited n € N, a function ¢ : I — R is n-exponentially
convez in the Jensen sense on I if

Zpﬂ% ($1+x ) >0

i,j=1
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holds for all choices p; € R and z; € I, i =1,...,n.
A function ¢ : I — R is n-exponentially convex on I if it is n-exponentially
convez in the Jensen sense and continuous on I.

The notation of n-exponential convexity is introduced in [16].

Remark 2. From Definition 2 it follows that 1-exponentially conver func-
tions in the Jensen sense are exactly nonnegative functions. Moreover, n-
exponentially convex functions in the Jensen sense are k-exponentially con-
vez in the Jensen sense for every k € N, k < n.

Definition 3. A function ¢ : I — R is exponentially convex in the Jensen
sense on I if it is n-exponentially convez in the Jensen sense for all n € N.

One of the most important properties of exponentially convex functions
is their integral representation (see [9, p. 211]).

Theorem 4.3. The function ¢ : I — R is exponentially convex on I if and
only if
o
(45) o@) = [ eao(s)
—00
for some non-decreasing function o : R — R.
The next example is deduced using integral representation (45) and some
results of the Laplace transform (see [19, p. 214 ]).

Example 1. The function ¢ : (0,00) — (0,00) defined by ¢(z) = e FV7 is

ezponentially convez on (0, 00) for every k > 0 as e FV* = f;oe’me’kz/“w%dt.

Definition 4. A function ¢ : I — (0,00) is said to be logarithmically convex
in the Jensen sense if

o (552 = vewew

holds for all x,y € I.

Definition 5. A function ¢ : I — (0, 00) is said to be logarithmically convex
or log-convez if

¢ (1= A)s +At) < o(s)' (1))
holds for all s,t € I, X € [0, 1].
Remark 3. If a function is continuous and log-convex in the Jensen sense

then it is also log-conver. We can also easily see that for positive functions

exponential convezity implies log-convezity (consider the Definition 2 for
n=2).

The following lemmas are equivalent to definition of convexity (see [17]).

Lemma 4.4. Let ¢ : I — R be a convex function. Then for any x1,xq,x3 €
I such that ©1 < xo < x3 the following is valid

(23 — 22) ¢ (21) + (21 — 23) & (22) + (22 — 11) ¢ (23) = 0.
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Lemma 4.5. Let ¢ : I — R be a convex function. Then for any x1, 2, y1, Y2, €
I such that 1 < y1, x2 < Y2, T1 # T2, Y1 7# Y2 the following is valid

¢(x2) —(x1) _ ¢(y2) o (y1)

T — T - Y2 — Y1

In order to obtain results regarding the exponential convexity, we define
the families of functions as follows.

For every choice of [ + 1 mutually different points zg, 21, ..., 2; € [a, 8] we
define

o Fi = {¢r : [,B] = R :t € I and t — [z0,T1,...,71;P¢) IS 1~
exponentially convex in the Jensen sense on I}

e Fo ={¢: [a,f] > R:t €l and t— [xg,x1,...., ;¢ IS exponen-
tially convex in the Jensen sense on I}

o F3 = {¢t : [a,8] = R:t €I and t — [xg,21,...,20; P¢) IS 2-
exponentially convex in the Jensen sense on I}

Theorem 4.6. Let Ay, and Ay, be the linear functional defined as in (43)
and (44) respectively. Let Fi be family of functions associated with A, for
p=12w=1,23,4. Then the following statements hold:

(i) The function t — A, (¢y), is n-exponentially convex in the Jensen
sense on I.

(ii) If the function t — Ap.w(¢r), is continuous on I, then it is n-
exponentially conver on I.

Proof. The proof is similar to the proof of Theorem 16 in [1]. g
The following corollary is an easy consequence of the previous theorem.

Corollary 4.7. Let A1, and Aay, be the linear functional defined as in (43)
and (44) respectively. Let Fo be family of functions associated with A,
p=12w=1,2,3,4. Then the following statements hold:

i) The function t — A, (¢¢) is exponentially convex in the Jensen
p, Y
sense on I.
ii) If the function t — A, (¢¢) is continuous on I, then it is exponen-
P,
tially convex on I.

Corollary 4.8. Let Ay, and Aoy, be the linear functional defined as in (43)
and (44) respectively. Let F3 be family of functions associated with Ap .,
p=12w=1,23,4. Then the following statements hold:

(i) If the functiont — A, (¢¢) is continuous on I, then it is 2-exponentially
convex on I. If t = A,w(¢y) is additionally positive, then it is also
log-convexr on I. Furthermore, for every choice r,s,t € I such that
r<s<t, it holds

Ao < (@)™ Ayl

(ii) If the function t — A, (¢y) is positive and differentiable on I, then
for all r,s,u,v € I such that r < wu, s < v, we have

(46) ]\/['r,s (Ap,wy }-3) S ]\']u,v (Ap,wy -F3) )
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where
Ansler)) =
p,w(Pr r=s .
(A ,w ¢S ’ T # s’
7 Mrs B F) =1 (diz/\p.w(m))
exp | EEms= | T =
Proof. The proof is similar to the proof of Corollary 2 in [1]. O

Remark 4. Note that the results from Theorem 4.6, Corollary 4.7 and
Corollary 4.8 still hold when two of the points xo, ..., x; € [a,b] coincide, say
1 = x9, for a family of differentiable functions ¢y such that the function
t = ¢ [xo, ..., 2] is an n-exponentially convex in the Jensen sense (expo-
nentially conver in the Jensen sense, log-convex in the Jensen sense), and
furthermore, they still hold when all (14 1) points coincide for a family of |
differentiable functions with the same property. The proofs are obtained by
(4) and suitable characterization of convezxity.

As an example of application of the previous results, consider the family
of functions

Q={¢p::(0,00) = (0,00) : t € (0,00)}

defined by

Since %ﬁ—t(x) = ¢~V 5 (), the function ¢ 18 m-convex function for every

t > 0. Moreover, the function ¢ — Cil"z‘ﬁ" (z) is exponentially convex. There-
fore, using the same arguments as in proof of Theorem 4.6, we conclude that
the function t — [xg, 21, ..., 27; 1] is exponentially convex (and so exponen-
tially convex in the Jensen sense ). Then from Corollary 4.7 it follows that
t— Apwl(er), p=1,2,w = 1,2,3,4 is exponentially convex in the Jensen
sense. It is easy to verify that the function ¢ — A(y;) is continuous, so it is
exponentially convex.

For this family of functions, with assumption that [o, 3] C (0,00) and
t = Apw(pe) is positive, (47), for p =1, w = 1,2, 3,4, becomes

= =1
]\/ITI’C (Al,un Q) = \/ﬁ'n 'pl q,ml n 7é (7
upeﬂ”l’\/Z - > e~ ¥av< — By,
p=1 q=1
m l
% > vgyqe YV — 3T wpape VT | — Az
q=1 p=1 n
MTIW (Al,w, Q) = €xXp 1 m - 2_ 3
_ _ n
S upe TV — 3 eV — Ay,

p=1 q=1
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Similarly for p = 2, we have
l m ﬁ
S Zl upe= "V — Z vge V1V — O
o= =
My (A2, Q) = NG , n#C
Z uPe_wp\fC Z Vg€ —¥aV/C Dl w
p=1

m 1
% <Z vgyqe VIV — Z upxpe_”ﬁﬁ) — Cow
= = n
2

Mnn (A2,wa Q) = exp
Z upe —Zp\/1 Z vge ~Yavi — Crw

p=1 q=1

where

Z“p w(Zp, 1) qu (yg, t ]

Alw—/

{”‘W \F)’“k eV <t—a>’“—1 — (1 = ) } a

Z(’» ! B -«

m
ZuPG Zp, ) quG’w(yq,t)] X

q=1
(VO eVt — )t eV R
(k—1)! B—a

l
Z“p (zp,t) — ZUq (yg. t ]

p=1
(VT = WI) i GV =) e VTt - ) eV (- p) ]
f—a = (k-1 B —a

B l m
Dy = / Z upGhy(Tp, t) — Z G (Yqs t)] X
« p=1 q=1

{(e‘m —)VE Vg eV ) e /3)’“‘1] u

8-« +k:3 (k= 1)! f—a

dCi
C?.w - d77
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Using Theorem 4.2 it follows that

]\[n,c (Aﬂ,w’ Q) == (\/7_7+ \/Z) log Hn,¢ (Ap,w, Q)

satisfies

ie.

« S Mn,( (Ap,wy Q) S By

M, ¢ (Apw, ) are means. By Corollary 4.8, using (46), it follows that

m

these means are monotonic.

(1]

=
A
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