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Abstract

The partition energy of a graph was introduced by E. Sampathkumar
et al. in [19] in 2015. In this paper, by the motivation of this new energy,
the partition Laplacian energy LE,(G) of a graph is introduced and the
LE,(G) of some important graph classes is discussed. Also, we obtain
some bounds for the partition Laplacian energy.
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1 Introduction
For standard definitions and terminology regarding graph theory, we refer [14].

Throughout this paper, we consider simple, undirected, signless graphs with-
out loops and multiple edges. The concept of graph energy was introduced by
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Gutman [12] as the sum of the absolute values of the eigenvalues of the adja-
cency matrix of the given graph G. To estimate the total m-electron energy
of a molecule has great importance in Chemistry. One can find other types of
energy such as distance energy, maximum degree energy, color energy, covering
energy, etc. in [1, 4, 5, 15].

2 Partition Laplacian Energy of a Graph

Let G be a simple graph of order n with vertex set V' = {vy,vg, -+, 0.}
and edge set E. Let the number of edges of G be m. The partition matrix
P(G) = (a;5) is given by

2, if there is an edge between v; and v;, where v;,v; € V,
—1, if there is no edge between v; and v;, where v;,v; € V,
a;j = 1, if v; and v; are adjacent between the sets V, and Vj
for r # s, where v; € V, and v; € V;
0, otherwise.

Partition energy of a graph is the sum of the absolute values of the eigenval-
ues of its partition matrix. This concept was introduced by E. Sampathkumar
et al., [19].

Motivated by the partition energy of a graph, in this section, we define the
partition Laplacian energy of a graph. Let D(G) be the diagonal matrix of
vertex degrees of the graph G. Then Lp(G) = D(G) — P(G) is called the par-
tition Laplacian matrix of G. Let ju1, o, - -+ , pt, be the eigenvalues of Lp(G),
arranged in non-increasing order. These eigenvalues are called partition Lapla-
cian eigenvalues of G. The partition Laplacian energy of the graph G is defined
as

2m
|

LEp(G) =Y |ni— — (1)
i=1
where m is the number of edges of G and 277” is the average degree of G.

In this paper, we study partition Laplacian energy of a graph with respect
to a given partition of a graph. Further, we determine partition Laplacian
energy of two types of complements of a partition graph called k-complement
and k(i)-complement of a graph (see [18]).

Definition 2.1. The complement of a graph G is a graph G on the same vertex
set such that two distinct vertices of G are adjacent if and only if they are not
adjacent in G.
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Definition 2.2. [18] Let G be a graph and P, = {V1, V4, ..., Vi.} be a partition
of its vertex set V.. The k-complement of G is denoted by (G), and is obtained
by removing the edges between V; and V; and adding the edges between the
vertices in V; and V; which are not in G, for all V; and V; in P, where i # j.

Definition 2.3. [18] Let G be a graph and P, = {V1,Va, ..., Vi } be a partition
of its vertex set V. Then the k(i)-complement of G is denoted by (G, and
is obtained by removing the edges of G which are joining the vertices within
V, and adding the edges of G which are joining the vertices of V, for each
component set V,. in P.

Definition 2.4. The spectrum of a graph G is the arrangement of distinct
ergenvalues \y > Ay > -+ > \,., with their multiplicities being my, ma, ..., My,
and we write it as

ml m2 ... mr

Spec(G):()\l Ao - ,\T).

3 Some Basic Properties of Partition Lapla-
cian Energy of a Graph

Let G = (V, E) be a graph with n vertices and P, = {V;,V,,...,V;} be a
partition of V. For each i such that 1 <1 <k, let b; denote the total number
of edges joining the vertices in V;, ¢; be the total number of edges joining the
vertices in V; to the ones in Vj for i # j, 1 < j <k, and d; be the number of
non-adjacent pairs of vertices within V;. Let

k k k
my = g b;, moy = g ¢; and ms = E d;.
i=1 i=1 i=1

Let Lp(G) be the partition Laplacian matrix of G. If the characteristic poly-
nomial of Lp(G) is ®F(G,\) = apA™ + ;A" ™t + axA\""2 + - - - + a,, then the
coefficients a; can be interpreted using the principal minors of Lp(G).

Proposition 3.1. If \;, Ay, ..., A, are partition Laplacian eigenvalues of P.(G),
then

Z)\iQ = Zd? + 2[41711 + mso + mg].
=1

=1
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Proof. We know that

n n n

2
E A= E E Qij Qi
i=1

i=1 j=1
n
2 2
= E a;; +2 E a;
i=1 i<j

= > d} + 2[4my + mg + my).

=1

The following general results follow easily:

Theorem 3.2. Let G be a graph with n vertices and Py be a partition of G.
Then

\/2K +n(n—1)D% < LEp (G) < \/QK(n —1)+nD=
where D = |det(Lp(G)) — 221| and K = 4my +my +ms + 5 >0, (d; — 22)2.

n

Theorem 3.3. If the partition Laplacian energy of a graph is a rational num-
ber, then it must be a positive even number.

4 Partition Laplacian Energy of Some Stan-
dard Graphs
Theorem 4.1. If K, is the complete graph of order n, then
LEp,(K,) = 4(n — 1).

Proof. Let K, be the complete graph with vertex set V' = {vy,vg, -+ ,v,}.
Consider that all the vertices are in one component.

n—1 =2 -2 ... =2 -2
-2 n-1 -2 ... =2 -2
-2 -2 n-—-1 ... =2 —2
Pp,(K,) = : : : .. : :
-2 -2 -2 ... n—1 =2
-2 -2 -2 ... =2 n-1

The characteristic equation is

A=+ D" "N+ (n-1)]=0
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and the partition Laplacian eigenvalues are
[ —(n—=1) n+1
Lspecp, (K,,) = ( 1 no1 )
As the number of vertices is n, the number of edges is @ and the average
vertex degree is n — 1 in K, the partition Laplacian energy is

LEp (K,) =|[-(n—1)—=(n-1)+]|n+1)—-(-1)[n-1) 0
=4(n—1).
Theorem 4.2. The 1-partition Laplacian energy of the cycle graph C,, is
= 2mrm
LEpl(Cn)zln—ﬂ—FZ\l—i-Gcos |
m=1

Proof. Consider that all the vertices are in one component. Then the 1-
partition Laplacian matrix is

2 —2 1 1 1 1 —2]
-2 2 -2 1 1 1 1
1 -2 2 -2 1 1
1 1 1 1 1 2 -2
-2 1 1 1 1 -2 2

This is a circullant matrix of order n.

Its eigenvalues are

f_— n — b, for m =0
"o 1—60052”7’”, for0<m<n
As the average vertex degree is 2 in the cycle graph C,,, the 1-partition
Laplacian energy is

n—1
2
LEp (Cn) =[n—5-2+ Z 11 —6COS$ —2|.

m=1
Therefore we get

n—1
2
LEp (C,) =|n—T7|+ Z |1+ 6cos mn

m=1
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Theorem 4.3. The 1-partition Laplacian energy of the star graph K, is

2(n—1)(n —2)

LEp, (Kip1) = -

+4vn — 1.

Proof. Consider once more that all the vertices are in one component. Then
the 1-partition Laplacian matrix is

(n—1 —2 —2 —2 2]
-2 1 1 1 1
-2 1 1 1 1
Pi(Kipa) = : : : : :
-2 1 1 1 1
-2 1 1 1 1

Hence, the characteristic equation is
(A" 2N = (2n — 2)A + (n* —6n +5)] = 0.

Therefore the spectrum is

Specpl(K1,n_1)=< 0 n—142vyn—1 n—1—12\/n—1>‘

n—2 1

As the number of vertices is n, the number of edges is n — 1, and the aver-

age vertex degree is 2("71—71) in the star graph, the 1-partition Laplacian energy is

LEp (Kip-1) =10- Z(”T‘l)\(n )4 ln—142v/n—1- 2(nn—1)|
b ln—1-2yn—T- X,

Therefore we get

2(n—1)(n —2)

LEp, (Kim1) = =———

+4vn — 1.

O

Definition 4.4. The crown graph S° for an integer n > 3 is the graph with
the vertex set {uy, ug, -+ , Uy, V1, vz, -+ , 0, } and the edge set

{uivj 1 S Za] S ’I’L,i #]}

SY is therefore equivalent to the complete bipartite graph K, ,, with horizontal
edges removed.

Theorem 4.5. The 1-partition Laplacian energy of the crown graph S° is

LEp, (S%) = 10n — 12.
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Proof. Let S be the crown graph of order 2n and consider that all of its

vertices {uy, ug, -+, Up, V1, Vo, -+, U, } are in the same component. Then
the 1-partition Laplacian matrix is
n—1 1 1 1 1 -2 ... =2 —2 7
1 n—1 1 e 1 -2 1 e =2 -2
1 1 n—1 ... 1 -2 -2 ... 1 1
1 1 1 n—1 =2 -2 -2 1
0y _
Al =1 -2 =2 -2 n-1 1 1 1
-2 1 -2 -2 1 n—1 1
—2 -2 1 e =2 1 1 oo n—1 1
| —2 -2 -2 ... 1 1 1 1 n—1]

Hence the characteristic equation is
A=m=5)""TA=n+1)"'A=1)(A— (4n —5)) = 0.
Therefore the spectrum is

n—5 n+1 1 4n—-5
Spec”l(sg):(nl n—-11 1 )

As the number of vertices is 2n, the number of edges is n(n — 1) and the
average vertex degree is n — 1 in a crown graph, we obtain the 1-partition
Laplacian energy of it as

LEp(SY) =n=5—-(n—-1)|(n—1)+|n+1—-(n—-1)|(n—-1)
+H1-(n—1)|+[4n—-5—(n—1) O
= 10n — 12.
Theorem 4.6. The 1-partition Laplacian energy of the cocktail party graph
Kn><2 15
Lf?p1 (Knxg) = 10(n — 1)

Proof. Consider that all the vertices are in one component. The 1-partition
Laplacian matrix is

2(n —1) 1 -2 ... =2 -2 -2
1 20n—1) -2 ... =2 -2 -2
-2 -2 2n-1) ... =2 -2 -2
-2 -2 1 e —2 -2 -2
Pi(Knx2) = : : z : : :
-2 -2 -2 e 1 -2 -2
-2 -2 -2 ... 2n-1) =2 -2
-2 -2 -2 ... =2 2(n-1) 1
-2 -2 -2 ... =2 1 2(n —1)
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Then the characteristic equation is

A+2n=3)A=2n+3)" A= (2n—-3))"=0

and therefore the spectrum is

Specr, (Kova) = (7

n—1

—2n+3 2n+3 2n—3>

As the number of vertices is 2n, the number of edges is 2n(n — 1) and the
average vertex degree is 2(n— 1), the 1-partition Laplacian energy of a cocktail

party graph is given by

LEp (K, x2) =|—(2n—3)—2(n—1)|+|2n+3) — 2(n —1)|(n — 1)

+2n =3 —=2(n—1)|n

=10(n — 1).

O

Theorem 4.7. The 1-partition Laplacian energy of the complete bipartite

graph K, , 1is

LEp,(K,.,) = 6n— 2.

Proof. Suppose that all of the vertices are in the same

partition Laplacian matrix is

n 1 1 1

1 n 1 1

1 1 n 1

1 1 1 =n

Py (Kon)
—2 -2 -2 -2

—2 -2 -2 -2

-2 -2 -2 -2

-2 -2 —2 -2

Hence the characteristic equation is

-2
-2

-2
-2
—2
-2

i

component. The 1-

-2 -2
-2 =2
-2 =2
-2 =2
1 1
1 1
n 1
1 n

A+DA=(n—=1)"2A-4n—-1))=0

and the spectrum is

—1

Specp, (Knn) = ( 1

4dn — 1
2n—2

1

).

Here the number of vertices is 2n, the number of edges is n? and the average
vertex degree is n implying the 1-partition Laplacian energy is

LEp (K,n,) =|—1—n|+|(n—1)—n|2n—2)+ |[4n — 1 —n|

= 6n — 2.
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Theorem 4.8. The 1-partition Laplacian energy of double star graph S, is

2n—1)(2n — 4
LEp (Spn) = (Gn=1)(n—4) +/36n — 11 + V4n% — 8n + 5.
n

Proof. Suppose that all of the vertices stay in one component. The 1-partition
Laplacian matrix is

n -2 -2 ... -2 -2 1 1 ... 17
-2 1 1 ... 1 1 1 1 .. 1
-2 1 1 ... 1 1 1 1 .. 1
-2 1 1 ... 1 1 1 1 .. 1
PSnn) =19 1 1 1 n -2 —2 . —2
1 1 1 ... 1 -2 1 1 .. 1
1 1 1 ... 1 -2 1 1 .. 1
1 1 1 ... 1 -2 1 1 ... 1]

and the characteristic equation becomes
(NN — (2n — DA+ (n — D][A =51 — (9n — 9)] = 0.

Hence the spectrum is
( 0 (2n—1)4+vVAnZ—8n15  (2n—1)—vAnZ—8n15  5+36n—11 5-—+/36n_11
2

2 2 2
2n—4 1 1 1 1

Having 2n vertices, 2n — 1 edges and average vertex degree Q"T_l, the 1-
partition Laplacian energy would be

LEp (K,,) =|0—-2=1+ |(2"*1)+\/4n278n+5 _ o1y
1 n,n
+| (2n—?)—\/m _2271,1 | "
2 n
54v36n—11 _ 2n-1
5-v36n—11 _ 2n-1

implying that

LEp,(Sp,) = 2208 4 /360 — 11 + v/An% — 8n + 5. O

Theorem 4.9. The 2-partition Laplacian energy of the crown graph of order
2n is
LEp,(S°) = 4(n —1).

We omit the proof of this theorem, since the proof is same as the color
Laplacian energy of S with minimum number of colors as in [7].
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Theorem 4.10. The 2-partition Laplacian energy of the double star graph S, ,,

1S
2n—1)(2n — 4
LEPz(Sn,n) = ( " )( n )+\/n2+8n+\/n2+4n—4

n

forn <4 and

2n—1)(2n — 4
LEPz(Sn,n) = ( n ?I”L( n ) +Vvn?+8n+ (377,—4)
formn > 5.

Proof. In the double star graph, we put the centers {ug, vo} into one component
and the remaining vertices to the other component of the partition. Then the
2-partition Laplacian matrix is

(n -1 -1 ... =1 =2 0 0 ... 07
-1 1 1 ....1 O 1 1 ... 1
-1 1 1 ... 1 O 1 1 ... 1
-1 -1 ... 1 0 1 1 ... 1
PSun) =129 0 0 . 0 n -1 -1 .. -1
o 1 1 ... 1 -1 1 1 ... 1
o 1 1 ... 1 -1 1 1 ... 1
Lo 1 1 ... 1 -1 1 1 ... 1,

Now the characteristic equation is
NN — (n+2)A — (n— DN = Bn—4)A+ (2n* = Tn +5)] =0

giving the spectrum as

0 n+2+vn2+8n  n+2—vn2+8n  In—4+vn2+4n—4  3In—4—V/n2+4n—4
2 2 2 2
2n — 4 1 1 1 1

Here the graph has 2n vertices, 2n — 1 edges and has an average vertex degree
2"7‘1 implying that the 2-partition Laplacian energy is
LEPQ(Sn,n) _ ‘O o an_l |(2n _ 4) + |(n+2)+2vn2+8n _ an—1|
(n+2)—vn2+8n o2n—1
(3n—4)+vn2+dn—4  2p—1
+| 2 T |

+(3n_4)-¢m 2n—1
| 2 T |

Therefore,

(2n—1)(2n —4)

LEp,(Snn) = +Vn2+8n+vVn2+4n —4
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for n < 4 and

2n —1)(2n — 4
LEPz(Sn,n> = ( n 31( n ) +vn2+8n+ (3n—4)
for n > 5. O

Theorem 4.11. The 2-partition Laplacian energy of the cycle graph Cy, is

2n—1
mm
LEp,(Con) =2n—2+ Y |1 +2c0s == |.

m=1m#n

Proof. Consider the odd labeled vertices vy, vs, vs, - - - , U2,_1 are in one compo-
nent and the even labeled vertices vy, v4, vg, - - - , U9, are in the other component.
Then the 2-partition Laplacian matrix is

2 -1 1 0 1 1 —1]
-1 2 -1 1 1
1 -1 2 -11 1 0
Pi(Con) = : : : S : :
1 0 1 0 1 ... 2 -1
-11 0 1 0 ... -1 2

This is a circullant matrix of order 2n. Its eigenvalues are

n—1, form=20
Am = 34+mn, form=mn
2—2cos™H, for0<m<2n-—1
As the average vertex degree is 2 in the cycle graph Cy,, the 2-partition Lapla-
cian energy is

2n—1
m
LEp,(Cop) =|n—1=2/+3+n—2|+ _12# 1 —2cos——2).
Therefore we get ’
2n—1 m
LEp,(Cop) =2n—2+ Z |1+ 2cos — I

m=1m#n
(]

Theorem 4.12. The 2-partition energy of the 2(i)-complement of the star
graph Ky ,_1 in which the central vertex of degree n — 1 is in one component
and vertices of degree 1 are in the other component is

2(n—2)+2vn? —3n+3.

487



488

P. S. K. Reddy, K. N. Prakasha and I. N. Cangul

Proof. Consider 2(i)-complement of star graph K;,_; in which the vertex of
degree n — 1 is in one component and the remaining vertices are in the second

component. Its partition Laplacian matrix is

n—1 -1 -1 -1 =1
-1 n—-1 =2 -2 -2
R 1 -2 n-1 -2 -2
Po(Kvn-1)y)) = | : : :
1 -2 -2 n—1 -2

-1 -2 -2 2 n-1

Hence the characteristic equation would be
A=+ 1)" 2N =2 = (n* =3n+2)] =0
implying the spectrum is
n+1l 1+vn?—3n+3 1—+vn>—-3n+3
n—2 1 1 '
The number of vertices is n, the number of edges is @ and the average
vertex degree is n—1 together implying that the 2(i)-partition Laplacian energy
of the star graph is
LEp((Kin 1)y = In+1—(n—1)](n—2)
+1++vVn?2=3n+3—(n—1)
+1—+vn?—=3n+3—(n—1)|

Therefore

LEPQ((KLn—l)Q(i)) =2(n—2)+2vn>—3n+3.
O

Theorem 4.13. The 2(i)-partition Laplacian energy of the crown graph of
order 2n 1s

LEp,((S2);)) = 6(n —1).

Proof. The 2(i)-partition of the crown graph is the cocktail party graph. We
omit the proof since it is similar to the one for the color Laplacian energy of
K, 2 with minimum number of colors as in [7]. O

Theorem 4.14. The 2-partition Laplacian energy of 2-complement of the cock-
tail party graph K,yo is

LEp, (Fo2) ) = 8(n — 1).
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Proof. Consider the 2-complement of the cocktail party graph (Knxg)@) whose
vertex set is partitioned into U, = {us,us,...,u,} and V,, = {v1,vq,...,v,}.
The 2-partition Laplacian matrix is

n -2 -2 ... -2 -1 0 ... 0 07
2 n -2 ... -2 0 -1 ... 0 0

2 2 n ... -2 0 0 ... -1 0

S 2 2 2 ....n 0 0 .. -1
Py((Knx2)) = | 3 0O 0 ... 0 n 2 .. -2 -2
0 -1 0 ... 0 -2 n ... -2 -2

0 0 —1 ... 0 -2 —2 ... n =2

0 0 0 ... -1 -2 -2 ... -2 n|

Hence the characteristic polynomial is
A+ n=D]N+ R =3 A=+ D]" A= (n+3)]"1=0
implying that the 2-partition Laplacian spectra is

_— —-n+1 —n+3 n+1 n+3
Spece, (Fara)) = ( ) .

1 1 n—1 n—1
The number of vertices is 2n, the number of edges is n? and the average vertex

degree is n in the 2-complement of the cocktail party graph, the 2-partition
Laplacian energy is

LEP2((KTL><2)(2)) = | - (TL - 1) - n’ + ‘ - (Tl - 3) - n’
+n+1-—n|(n—1)+|n+3—n|(n—1)
and therefore we get
LEPz((Knx2>(2)) =8(n—1).
O

Theorem 4.15. The 2-partition Laplacian energy of 2(i)-complement of dou-
ble star graph S, . is

LB (GT) = GGt 4\ 9nT =200 + 12 +v/n2 + 8n forn =3,
P> 1) 2(1) (3n—1)(2n—4) + 2(2n2;3n+1) + \/m fOT‘ n> 4.

n

489
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Proof. In 2(i)-complement of the double star graph, the centers {ug, v} are
put in one component and the remaining vertices are put into the second
component. The minimum dominating 2-partition matrix is

m-1 -1 -1 ... -1 1 0 ... 0
1 m-2 -2 .. 2 0 2 . 2
1 =2 -2 ... =2 0 9 .. 2
. 1 -2 2 .. 2m—2 0 2 .. =2
Po((Snn)a) = | 4 0 O ... 0 =n-1 -1 .. -1
9 2 ... 2 1 m-2 .. -2
0 2 2 ... 2 1 2 .. 2

0 2 2 ... -2 1 -2 ... 2n-—2]

Therefore the characteristic equation is

(A=2n)"""Y N2 = (B3n—2)A+ (2n* = 5n+ D[N+ (n—4)A— (2n* —=3n—1)] =0
giving the spectrum as

( m —n44+v9n?—20n+12 -n+4-\/9;2-2w 3n—2+\2/m 3n—2—vn?+8n )

2 2
2n —4 1 1 1 1

The graph has 2n vertices, 2n® — 3n + 1 edges and an average vertex degree
72"2_3"“ giving the 2-partition Laplacian energy as

LEPz((SnJl)Z(i)) =2n - MK% 4)
+| —n+4+V9 n2 20n+12 2n273n+1|
| n+47\/9n2 20n+12 2n273n+1|
_|_|3n 2+\/n2+8n 2n273n+1|
_|_|3n 27\/n2+8n 2n273n+1|
2

n

Therefore we obtain

L (e ) R e OnE =200+ 12+ Vi 480 for n=3,
PQ(( n,n)2(i)) - (3n7131(2n74) + 2(2n2:l3n+1) + \/m for n > 4.
O

5 Partition Laplacian energy of graphs with
one edge deleted

In this section we obtain the partition Laplacian energy for certain graphs with
one edge deleted.
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Theorem 5.1. Let e be the edge of complete graph K,.
n2 —
LEp (K, — )—2( +Vn2+2n— >

Proof. Let K, be the complete graph with vertex set V = {vy,vg, -+ ,u,}.
Consider that all the vertices are in one component.

(n—2 —2 -2 ... -2 -2
-2 n-2 -2 ... -2 -2
—2 -2 n—-1 ... -2 =2
PPl(Kn_e): . : : .. : :
-2 -2 -2 .. n—-1 =2
-2 -2 -2 ... -2 n-1

The characteristic equation is

A= =3)]A=n+D]" A+ (n—1)]N -4\ — (n®*+2n—11)] =0

and the partition Laplacian eigenvalues are

(n—S n+1 24+vVn2+2n—7 2—\/112—1—271—7)

Lspecp, (K,, — e) = 1 n_3 1 1

As the number of vertices is n, the number of edges is "2*2"*2 and the average
vertex degree is "*T“ in K, the partition Laplacian energy is

2

LEp (Kn—e) =|n—3— ==
+n+1-— ”;”|(n—3)
+|2 4+ VR + 20 — 7 — m2=n=2 O
+24+vVn2+2n -7 ”—n2|
:2(—"-g4+\/n?+T).

Theorem 5.2. Let e be an edge of the complete bipartite graph K, ,. The
1-partition Laplacian energy of K, , — e is

4-2
LEp,(Kpn—€) = —— +v/On2 + 24n — 32 + Vn? + 4n — 4.
n

Proof. Suppose that all of the vertices are in one component. The 1-partition
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Pl(Kn,n — 6) =
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-1 1 1 1 1 -2 —2 —2]
1 n 1 1 —2 -2 -2 -2
1 1 n 1 -2 -2 -2 -2
1 1 1 n —2 -2 -2 -2
1 -2 -2 -2 ...n—-11 1 1
-2 -2 -2 —2 ... 1 n 1 1
-2 -2 -2 -2 ... 1 1 n 1
—2 -2 -2 -2 1 1 1 n

Hence the characteristic equation is

N =nA—(n—=1)\—=(n—1))*"""*N+ (6 —5n)A+ (4n® = 2In+17)) =0

and the spectrum is

Specp, (Knn) — e = (

Here the number of vertices is 2n, the number of edges isn?—1 and the average

LEp (K, , —¢)
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