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POSET WEIGHT ENUMERATORS

DONG-CHAN KIM! AND DAE SAN KIM?

ABSTRACT. Jurrius et al. give the explicit identities for relations among various
weight enumerators with respect to Hamming weight [4]. These identities show the
connections between coding theory and graph theory. In this paper, we generalize
the weight enumerators of a code with respect to poset weight: (i) poset weight
enumerator, (i7) r-th higher poset weight enumerator, (i) extension poset weight
enumerator and (iv) poset Tutte polynomial. And we give the relations among
these enumerators that are the connection between poset codes and graph theory.

1. INTRODUCTION

Weight distribution of a code is one of main research topics in coding theory.
In general, the weight distribution is represented by various weight enumerators(or
weight generating functions). Jurrius et al. give the explicit identities for relations
among various weight enumerators with respect to Hamming weight [4]. These
identities show the connections between coding theory and graph theory. In this
paper, we generalize the weight enumerators of a code with respect to poset weight:
() poset weight enumerator, (i4) r-th higher poset weight enumerator, (iii) extension
poset weight enumerator and (iv) poset Tutte polynomial. And we give the relations
among these enumerators that are the connection between poset codes and graph
theory.

Section 2 shows the definition of poset codes and properties of puncturing and short-
ening codes. Section 3 gives some useful identities used in proofs of propositions and
lemmas in Section 4 and Section 5. We introduce poset weight enumerators in Sec-
tion 4, and their relations in Section 5.

2. POSET CODES

Poset and ideals. Let P = ([n], <p) be a poset on [n] = {1,2,...,n}. The dual
poset P+ = ([n], <p1) of P is defined by the poset on [n] such that i <p. j if and
only if 7 <p i. A subset J C [n] is an ideal in P if j € J and i <p j then i € J.
Let Z(PP) be the set of ideals in P. Then Z(P+) equals {J C [n] : J € Z(P)} where
J:=[n]\ J. For J C [n], let {J)p be the smallest ideal of P containing .J and let [J]p
be the largest ideal of P contained in J [5], i.e., (J)p:= () land [Jlp:= U I
I€Z(P) I€L(P)
Jci IcJ
Proposition 2.1 ( [5]). Let I, J C [n].
(i) If I CJ, then I C (I)p C (J)p and [Ilp C [J]p C J.
(i) (TUJ)yp={()pU(J)p.
(t5i) I C [Jlp, (I)p C J and (I)p C [J]p are equivalent.
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(iv) J € Z(P) if and only if J € T(P+).

(@) (N)p=1[7 Jps-

Proof. (1) It is trivial by definition. (i¢) (=) For any a € (IUJ)p, there exists b € I
or b € J such that a <p b. So a 6 (Ip or a € (J)p. (<) It is derived from ()
directly. (4it) Suppose I C [J]p. By (i), I € (I)p C ([J]p)p = [J]p € J. Suppose
Do e By (7 ¢ (De = il C [Jlr € J. Suppose (D)x < [Jls. By (),
Yp C [J]p C J. (iv) Suppose J ¢ Z(P+). By definition of an ideal, there exists

T >HJ>L

rc(I

(:c,y) € J x J such that x >p. y. Since y is equivalent to = <p y, we have

J ¢ I(P). (v) By (iv) wehave (J)p= () I= U I= U I= U I=
IeZ(P) I€Z(P) Tez(ph) IeZ(Pl)
JciI JciI icT IcT

[ J ]pe. O

Poset weight and distance. Let F; be a finite field with ¢ elements. In a vector
space [y, we define P-weight wp by wp(v) := |(supp(v))p| for v = (v1,...,v,) € Fy
where supp(v) := {i : v; # 0}. The P-distance of two vectors u,v € Fy is defined
by distp(u,v) := |wp(u — v)|. It is easy to prove that distp is metric [1]. We say the
space equipped with the P-distance a P-metric space.

Poset codes were introduced in [1]. They are just nonempty subsets in Fy,
equipped with any poset weight wp instead of the usual Hamming weight wy. In
this paper, given a poset P on [n], we consider a linear P-code Cp over F,; with length
n and dimension k. The dual code of Cp is defined by {u € Fy : u-c =0 for c € Cp}
where - is usual inner product and weights of dual codewords are computed with
respect to wpi. The (n — k)-dimensional dual poset code of Cp is denoted by Cp..

For simplicity of notation, from now on, we let C and C* stand for Cp and Cp.
respectively.

Puncturing and shortening codes. For .J C [n], the puncturing code C/ on .J of
C is defined by C7 := {¢/ € ]F!Z‘Il ic=(c1y...,cn) € C} where ¢/ = (¢;)ies € ]FLJI and
the shortening code C; on J of C is defined by C; := {c’ € IFLJl :c€C, supp(c) C J}.
It is well known that (C*); = (C7)*, and note that this is derived without poset
duality [6].

Rank function. Let G be the (k x n)-generator matrix of C over F, with length n
and dimension k. The rank functions p : [n] — Z of C is defined by p(.J) := rank(G”)
for J C [n] where G” is the sub-matrix of the generator matrix G of C consisting of
the columns indexed by J [7]. Note that G is the generator matrix of the puncturing
code C”, so p(J) = dim(C”). Let p- denote the rank function of C*+ and it is called
the corank function of C.

Proposition 2.2. Let J C [n].

(i) p(0) = 0.
(i1) 0 < p(J) < min(k, |J]).
(wii) If J1 C Jo C [n], then p(J1) < p(J2).
(w) If p(J) = |J|, then p(I) = |I| for all I C J.
Proof. (i) — (iv) are obtained from the definition directly. O

Lemma 2.3. Let J C [n].
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(@) If p(J) =k, thenﬂ (J) = [J].
(i) dim(Cy) = || = p=(J) =k — p(J).

Proof. (i) If p(J) = dim(C”) = k, then ¢’ # 0 for all nonzero ¢ € C, so Cy = {0}.
Therefore 0 = dim(C5) = [J| — dim((C*)”) = |J| — p+(J). (ii) For X C J with
p(X) = |X| = p(J), there exists Y C J such that k = p(X UY) = [XUY]| =
|X|+1Y]. By (i), we know p~(X UY) = | X UY|=n—k,and p~(J) > p~(J\Y) =
[J\Y| =[] - |Y]|=|J| - (k—|X]) =|J| — (k— p(J)). By same way, we have

p(J) > |J| (n—k —p*=(J)). Replacing J by J, p(J) > |J| — (n—k — p~(J)). Thus
we have p(J) > [J| =k +p(J) > [J| —k+|J| = (n — k — p~(J)) = p~(J). Hence
it is proved. (]

Corollary 2.4 is derived from Lemma 2.3 (4i).

Corollary 2.4. Let C be an [n, k] linear code over Fq and let p be the rank function
of C. If J C [n], then |C;| = qk—P(J).

3. USEFUL IDENTITIES

Propositions below are very useful to derive several weight polynomial identities.

Proposition 3.1. For 0 < j <i<n,

@ (D) =G
(1) ai =37 (i)bJ = "7’ ) n—j if and only if b; = Z(fl)j_i(g) a

Jj=t 7=0 Jj=i

Proof. (i) It is easy to prove. (i) is derived from (i) as follows.

> (=5 () S (- e (5) (o

=;,;<—l>m‘j(’?)(Ziié)am=,;(’?)am;<—l>’”‘j<$i§>
B () E (e
(]

Proposition 3.2. We have

(@) ¥ (@—y)Mly=an.

JC[n|

(44) z[:] —1)“""(4‘2) = 0;0 where 8oy is Kronecker delta.
JC[n

(iii) 3 (=DM (as = 2 (-177C) ¥ as.
JC[n] Jj=i JC[n]

[J]=j

(iv) 3 ( 2 (U“'"'(E’Jw) 2"y = Y ag(@—y) iyl
=0

JC[n] JCn]
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Proof. (i) ¥ @ —y)y7l = 3> ¥ (@ — )iy = 3 ()@ —y)y" = (a -
JC|n] =0 {J%El] =0

y) +y)"=a".
(74) By Proposition 3.1 (4), it is proved as follows.

s (2)-E x-S0 Yo

JC[n]

j=i JC[n] Jj=0JC[n] JC|n]
|J]=j [J|=j
(iv)
- e n—i, i _ - e n—i, i
Z( (=1) ||<n_i)(u>w y—ZGJZ(—l) ||<n_i "y
i=0 \JC[n] JC[n] =0
< J|—i J i, |J|—i J
=Y a3 ()7 <|i|>‘” = 3 aye — )TV,
JC[n] i=0 JC[n]

O

Let mq denote the number of r-dimensional subspaces of k-dimensional vector

r—1

k, .
[[r:]];l where [k, 7], := jl;[o(qk —¢’). The number
of m x n matrices over F, having rank r is [m,r|, mqv and s0 ¢™ = | My xn(F,)]

can be represented by

space IF’;. We know that m g equals

m

) ¢"" = {A € Myun(Fy) : rank(A) = r}| = [m, 7], m ;
q

r=0 r=0
where Mp,xn(Fy) is the set of m x n matrices having entries in F,,.

Proposition 3.3 ( [5]). We have
= " Tk (k—r—1)(k—r)
[T =3[ e
r=0 r=0 T a
Proof. It is proved by induction on k. O
From Proposition 3.3, we have, for m > r,

r—1 T (i )
@) oy = [[(@" — @) =3 H (—1) =g ==L iy,
q

j=0 =0t
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4. SEVERAL WEIGHT ENUMERATORS FOR P-CODES
Let P be a poset on [n]. Let C be an P-code with length n over F,. In this section,
we introduce three weight enumerators and a polynomial of a P-code C as follows:

(1) P-weight enumerator We p(z, y).

(¢) r-th higher P-weight enumerator Wg p(,y) for 0 <r < k.
(it7) Extension P-weight enumerator We p(z, y,t).
(iv) P-Tutte polynomial T¢ p(z,y).

4.1. P-weight enumerator We p(x,y). The P-weight enumerator We p(z,y) of C
is defined by

Wep(z,y) =Y a2y =" A, 5(C) 2"y,
ceC 1=0
where A; p(C) = [{c € C : wp(c) = i}|.

Lemma 4.1. For 0 <1 <n,

(i) 3 () Aip(C) =

j=0 C[n
|J]|=i
(i) A ip(©) = 2 (~107 (1) S Cupl= X (~D)T=i (T eyl

J=t JC[n] JC[n]

[J|=n—j

Proof. (i) By Proposition 2.1 (iii), we have

dolewel=2 > 1=> >, 1=> ) 1

JC[n] JC|n] ceC JC[n] ceC ceC JC[n]
|J]=i |J|=i supp(c)C[J]e |J|=i (supp(c))pCJ |J|=i
(supp(c))pCJ
n — |{supp(c))
N D SID Sl (i
ceC j=0 ceC
wp(c)=j

::O (Z J)A]’ ©)

(#i) (¢) and Proposition 3.1 (ii), we have

An—ip(C) = i < ) > 1egl i gz (Z) C7.

Jj=i JC[n]
[J|=3
=3 Y (] gl - Z(l)““("”)w
=0 JCn] Il
[J|=3

(]
Theorem 4.2. Let P be a poset on [n], and let C be an [n, k] P-code over F,. We

have o )
Wep(z,y) = Z g PUTR) (g — )Ty l1,
JC[n]
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where p is the rank function of C.

Proof. By Corollary 2.4, Proposition 3.2 (iv) and Lemma 4.1 (i7), we have

- nei i\ i J Ny
> ir© =3 (3 o (7 it o
=0

i=0 \JC[n]
_ Z ¢ W) (g — )yl
JCln]
|

4.2. r-th higher P-weight enumerator W}, ,(z,y). For 0 < r < k, we define r-th
higher P-weight enumerator Wp, p(z,y) of C as

Wepla,y):= Y a" = Plye® =% T ATp(C) "y,
DCC i=0
dim(D)=r

where wp(D) = [(supp(D))p|, supp(D) = |J supp(v) and Ajp(C) = {D C C :
veED

wp(D) = i,dim(D) = r}|. It is easy to prove that We p(z,y) = x”+(q—1)WC17P(x, Y).

Lemma 4.3. For 0 <i<n and 0 <r <k, we have

Q) Y (D ATE(C) = 3 [kfpgmqq'

Jj=0 JC[n]
|J|=1i o
(ZZ) A;;_ﬂp(c) — E(_l)j—i (z) Z [k*P(T[J]?)] — Z (_1)|7|—i(|ui7|) [k*PSn[J]?)] )
’ 7= JC[n] T ch !

|J|=n—j

Proof. (i) The proof is similar to that of Lemma 4.1 (). Here we count |{(D,J) :
D C C, dim(D) = r, (supp(D))p C J,|J| = ¢}|. (4) The proof is similar to that of

Lemma 4.1 (i). O
Theorem 4.4. Let P be a poset on [n]. Let C be an [n,k] P-code over F,. For
0<r<k,
. k- p([J]p 5
Wesw) = 3 |F 7] oy
JC[n] 4

where p is the rank function of C.

Proof. Tt is proved by Proposition 3.2 (iv) and Lemma 4.3 (i7). The proof is similar
to that of Theorem 4.2. O

4.3. Extension P-weight enumerator W p(z,y,t). Given an [n, k] P-code C over
F, with a generator matrix G and a positive integer m, we consider the extension
code over Fym having G as its generator matrix, and denote the extension code of C
by C @ Fgm. Note that the dimension of C ® Fym over Fgm is equal to that of C over
F,, and for any J C [n], p(J) over F, is identical to p(J) over Fgm. Therefore, by
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Lemma 4.1 (7), for 0 <14 <n,

(3) 3 (n J>A]P(C @Fm)= (g™t
=0T JCIn)
|J]=i
and
(4) Westmp(@y) = 3 (@) (@ — )y,
JC[n]

Using ¢ as a variable for ¢™ in (4), we define the extension P-weight enumerator
Wep(z,y,t) of C by

Wep(z,y,t) Z th= P([JE’ y)l7ly\J\.
JC[n]
Note that WC®]qu ,[P(x, y) = ch]p(l’, Y, qm) and WC,]P’(xa y) = WC,]P’(xa Y, q)

4.4. P-Tutte polynomial 7¢ p(z,y). Original Tutte polynomials play an important
role in graph theory [7]. So we generalize the original Tutte polynomials with respect
to poset codes to make the connection between poset codes and graph theory.

Let P be a poset on [n]. Let C be an [n, k] P-code over F,, and let C* be the dual
code of C. Let p and p be the rank and corank functions of C, respectively. The
P-rank generating function R¢p(x,y) of C is defined by

Rep(z,y) Z 2h=r([7]e) IJI—p(W)
JC|n]
And we define P-Tutte polynomial T¢ p(z,y) of C as follows:
Tep(z,y) :=Rep(z —1,y—1) = Z (z — 1)1@7,)(@)@ _ 1)\j|7p(m).
JC[n]

Note that Te p(7,y) = Tegr,m p(z,y) for any positive integer m by the definition of IP-
Tutte polynomial. If P’ is an anti-chain on [n], we have that Tep(x,y) = Te1 po(y, 2)
and the classical MacWilliams identity (5) can be obtained by using this duality [3].

) Wes(.9) = 15

However, in general, we know Tep(7,y) # Te1 pi(y,z) for an arbitrary poset P.

CWela + (g — Dy.x — y).

Remark 4.5. If the P-rank generating function Rep(x,y) is defined by
Rep(z,y) = Zxk D | )el— ﬂ(())
JCln)
then the P-Tutte polynomial Tep(z,y) is as follows:

Ter(r,y) =Replz —Ly—1)= Y (¢ 1)e=p(1712) (y — 1)[Del=r(E)2),
JC[n]

Under this definition, we have Tep(2,y) = Ter pr(y, ), however, the relation (9)
cannot be derived.
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5. RELATIONS AMONG THE WEIGHT ENUMERATORS

By (1), (3), Lemma 4.3 (i) and Theorem 4.4, for a positive integer m, Lemma
5.1 is obtained.

Lemma 5.1. For 0 <i<n and m > 1,

(i) Ap(C O Fpn) = 3 [morly Af(C).

m

(ZZ) WC@qu ,]P(ZU,y) = ;0 [mv T]qwg,]l”(mv Z/)
Proof. (i)
Aip(C % Fym) = (—1)y <nj—l> Z <Z [m,r]q [k—pﬁ[ ]P)} )
j=n—i JCn] \r=0 q
|J|=n—j
= Y m,r 3 it k_P(m)
_g[ 7l j:Zn_i( 1y (n—z> ng[n] { r L
|J|=n—j
- Z [m, rlq Ajp(C).
r=0
(id

Weghm p(,) = Z (q™)E=P 02 (2 — ) Iyl

m T]q —p([ ]n»)} ) (& — )y

< im r]q PT([ ]P)} > (& — )Ty
r=0 q

k
Z [m,r WCIP’ € y)
r=0

By Lemma 5.1 (iz), we have

k r—1
(6) Wep(z,y,t) = (H(t - qj)) Wep(,y)-

r=0 \j=0
Therefore, from (2) and Theorem 4.4, r-th higher P-weight enumerator W;, p(z,y)
can be represented in terms of extension P-weight enumerators {We p(z,y, ¢ )};7:0



Poset weight enumerators 221

as follows: for 0 <r <k,

r k- p([J]p -
WC,IP)(xv y) = Z |: p’r(‘[ ]P):| (,’,U— y)|J|y|J|
JC[n] q
1 — [r i i DGg) _
= Z Z [:| (-1)"q — (qJ)k P([J}_)($7y)|J|y|J|
[ 7lq JCin) j=0 W1q
1 _j =imDe=g) o o(TTT -
= 7] H (-1)"q = Z (qJ)k P([J}_)(x_y)llelﬂ
T, Tlq i=0 Jlq =
L —~ [r ; (r—j=1)(r—j) .
= _\r—j ,,— L= j
(7) [r,7]q Z [J (=1)"q ? Wep(z,y, ).
7=0 q

From Theorem 4.2, P-weight enumerator We p(z,y) can be expressed by P-Tutte
polynomial 7¢ p(z,y) as follows.

Wep(z,y) = Y PR (@ — gyl

JCln)

— (il? o y)k ynfk Z qkfp([J]?) (CIT o y)ﬁ\fk y|J|fn+l€

JCl]

k—p([71) 71-p([7T2)

— (0 ok =k qy r—y
=@y Z(%—:u) ( y )

JCln]
—(r—y)* " Rep (ﬂ u)

-y oy
®) — (@)t gk e (T2
r—y Ty

(8) shows the connection between P-weight enumerator We p(x,y) and P-Tutte
polynomial 7¢ p(z,y). It is generalization of Greene theorem [2].

From (8), we get (9) easily.

t—1
0 Wealo) = (o - ™ Tep (2002,
r—y Y
In (9), replacing z,y and ¢ by y,1 and (z — 1)(y — 1) respectively, we have
Tep(z,y)
(10) =(y— 17" Weply, L, (z — 1)(y — 1))
k r—1
(11) -1y (H«x S -1) - qJ‘)) Wep(y,1). (by (6))
r=0 \j=0
By (7) and (9), we have, for 0 < r < k,
ng"]p(l‘,y)
—_)kyn—k " C (r—j1)(r—j J_
(12) _ (x —y)*y Z r (—1)’“*9q( ) Tor x + (g 1)y,£ .
(rrle = Uiy T -y Y
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According to the above identities (6), (7), (9), (10), (11) and (12) for relations
among weight polynomials, we have Theorem 5.2.

Theorem 5.2. Let P be a poset on [n] and let C be an [n, k] P-code over Fy. Then
we have the following identities.

1 —[r I ) ,
WE,P(x7y> =11 Z |::| (_1)7‘ ]q 2 WC,IP’(QU,?J»QJ)
[T" T]q ]=0 J q

)

_ (z - y)kyn—k zr: [7} (41)r—jq£%r—j) Top <x+ (¢ — Dy E) )
q

(rrle =l T -y y
k r—1 '
Wep(z,y,t) =Y [ [[¢t—d¢) | Wesla.y)
r=0 7=0

k. n—k r+(t—1)y $>
= - 7’_ .
(@ — )y %y( PR

7—C,]P’(x7y) = (y - 1)_k WC,]P‘(:% ]-7 (1; - 1)(y - 1))

k r—1
-1 ([ -0 —1) - @) | Waplu, ).
r=0 7=0
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