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A NEW CLASS OF DOUBLE INTEGRALS INVOLVING
GENERALIZED HYPERGEOMETRIC FUNCTIONS

JUNESANG CHOI"* AND A. K. RATHIE?

ABSTRACT. The objective of this paper is to evaluate two double inte-
grals involving generalized hypergeometric functions which are given in
two unified forms and each of which contains 25 double integrals. The
results are derived with the help of Edwards’s double integral and the
generalized Watson’s summation theorem due to Lavoie et al..
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, let C, Z and N be the sets of complex numbers,
integers and positive integers, respectively, and

No:=NU{0} and Z;:=Z\N.

The natural generalization of the Gauss’s hypergeometric function oF) is
called the generalized hypergeometric series ,Fy (p, ¢ € No) defined by (see
[1], [6, p. 73] and [7, pp. 71-75]):
’ . o0 n

qu |:0617 ey Oép, Z:| :Z (al)n .. (ap)nz_'

(1) B, .-, Bq§ neo (51)n(ﬂq)n n:

:qu(ah <oy Qpj /Bla "')ﬁq; 2)7

where ()),, is the Pochhammer symbol defined (for A € C) by (see [7, p. 2
and p. 5]):
I'(A+n)

(A)”::W (AeC\Zy)

(2) (1 (n=0)
A+ (A+n—1) (neEN)

and I'()) is the familiar Gamma function. Here an empty product is inter-
preted as 1, and we assume (for simplicity) that the variable z, the numerator

parameters oy, ..., ap, and the denominator parameters f, ..., 5, take on
complex values, provided that no zeros appear in the denominator of (1),
that is,

3) (B €C\Zy; j=1,....q).
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For more details of ,F| including its convergence, its various special and
limiting cases, and its further diverse generalizations, among an extensive
literature, one may refer to [1, 6, 7].

It is worthy of note that whenever the generalized hypergeometirc function
pFy (including o F7) with its specified argument (for example, unit argument)
can be summed to be expressed in terms of the Gamma functions, the result
may be very important from both theoretical and applicable points of view.
Here, the classical summation theorems for the hypergeometric series oF
such as those of Gauss and Gauss second, Kummer, and Bailey; Watson’s,
Dixon’s, Whipple’s and Saalschiitz’s summation theorems for the series 3F5
and others play important roles in theory and application. During 1992-
1996, in a series of works [3, 4, 5], Lavoie et al. have generalized the above
mentioned classical summation theorems for gF5 of Watson, Dixon, and
Whipple and presented a large number of special and limiting cases of their
results. Those results have also been obtained and verified with the help of
computer programs (for example, Mathematica).

In our present investigation, we recall the following classical Watson’s
summation theorem (see, e.g., [1, 6]; see also [7, p. 351]):

a, b, c;

" 3F, %(a+b+1),2‘331
I()T(c+ DT (Rat b+ (e La—Lb+1)
F(Jat+ DTG+ DT (c—Sa+ DT (c—b+1)

provided R(2¢ —a — b) > —1.
Lavoie et al. [3] established a generalization of (4), which contains twenty
five identities closely related to (4), recorded in the following single form:

(5)
a, by e | _ 4 oarbri-2
3F2[§(a+b+z’+1),2c+j;1 = Aji2

XP(%CH—%ZH—%H—%) Le+[/2+3) T(c—3a+b+l]i+j—j—1))

A, L(za+i(1=(1)) I (50)
M (e gat 3 U/A - 3T (D) T (e 5o+ 5+ 05/2)

+Cji

T(fa+3(1+(-D)) T (db+3)
T (c—ga+[(j+1)/2)+3(=1) (1= (=1))) T (¢ = 3b+[(j +1)/2])
=0
fori, j =0, £1, £2. Here, [z] denotes the greatest integer less than or equal

to « and |z| is the absolute value of . The coefficients A;;, B;; and C;; are
given in the tables below.

Here, in this paper, we aim to evaluate the following two classes of (pre-
sumably) new and (potentially) useful integrals associated with generalized
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hypergeometric functions:

1 1
| [ ra-atampetamay
0 0

a, b, 2c+0+1;y(1—x)
F: ’ T dxd
X32[%(a+b+z+1),2c+;; 1 _zy | Y

and
1 pl
// yc+z+1(17l’)c+e(lfy)071(171@)7207@
o Jo
. a,b,2c+0+1; 1—y
2 et btit 1), 2045 T — ay
(leZ and i,j=0,+1, +£2)

by mainly using the generalized Watson’s summation theorem due to Lavoie
et al. (5) and the following double integral due to Edwards [2]:

/ / 1 _ x)a 1 ( _ y)ﬁ—l (1 - xy)l—a—ﬁ dady = ?((‘Z)i(g))

provided R(«) > 0 and R(B) > 0. One hundred interesting general double
integrals are also given as special cases of the main results.

} dx dy

2. GENERAL INTEGRAL FORMULAS

Here we present two classes of integral formulas involving the generalized
hypergeometric functions 3F5, which are asserted by the following theorem.

Theorem 2.1. The following double integral formulas hold true:

/ / e 2 (L ) (L — )

a, b, 2c+0+1;y(1 - )
7 F M
(7) s 2{%(a+b+z+1)7 2etj; 1—ay il
() T(c+E+1)
L(2c+(+1)
and
1 1
/0 /0 Y (1 - a) T (=) (- ay)
a,b,2c+0+1; 1—y
8 :
(8) X3F2[%(a+b+z+1)-,20+35193y el

_Te)T(c+L+1)

- I(2c+tl+1) 7
where Q is given in (5), L € Z, and i, j =0, £1, +2, and provided R(c+{) >
0 (LeNy); R(e) > ¢ (LeZ\Ng) and R(2c —a—-b+i+2j+1) >0
(i, 7 =0, £1, +2).
Proof. Let L be the left-hand side of (7). Expressing the 3F» in (7) as the
corresponding summation in (1) and interchanging the order of integral and
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summation, which is guaranteed by the uniform convergence of the series on
the interval, we obtain

In (2c+ €+ 1),
L= Z (a+b+z+1))n (2¢+j)nn

% / / yc—l—n (1 o x)c+n—1 (1 - y)c+é (1 _ xy)—2c—€—n da:dy.
0 Jo

Evaluating the the double integral with the aid of (6), after a little sim-
plification, we get

F(c) Tlc+l+1) & Z Jn (0)n (¢)n
1

ﬁ .
T2c+l+1) & §a+b+z+1)) (2¢+ j)nn!

Using (1), we have
DT+ 0+ 1) a b o
T Tt l+1) P Mat+b+itl),2e+5;
which, upon evaluating with the aid of (5), is led to the right-hand side of

(7).

The formula (8) can be established in the same process as in the proof of
(7). So details of its proof are omitted. This completes the proof.
([

3. SPECIAL CASES

Here, as special cases of the main results (7) and (8), we present one
hundred interesting integral formulas, which are given in the following four
corollaries. In fact, in (7) and (8), for n € N, letting b = —2n and replacing
a by a + 2n, or, letting b = —2n — 1 and replacing a by a + 2n + 1, we find
that, in each case, one of the two terms appearing on the right-hand sides
of (7) and (8) will vanish. Then, under the given conditions, it is easy to
get one hundred desired integral formulas.

Corollary 3.1. The following integral formulas hold true:

(9)1 )
/ / yc (1 o :E)C_l (1 - y)c+l (1 - :Ey)—2c—€
0 Jo

—2n, a+2n, 2c+ 0+ 1; y( x)
F dxd
e 2[ Wati+1), 2045 1-ay | Y

T+ e+1) (2)a (Jo—e+i-SE-[F+1a-(-19])
Y TEet+ ) (c+3+[4]) Ga+ia+ (1),

=01 (meNyleZ; i, j=0,+1, +2),

n

where D; j are given in the table below.
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Corollary 3.2. The following integral formulas hold true:

(10)1 1
[ et @t e
0 0

—2n—1,a+2n+1,2c+ 0+ 1;y(1 —x)
E . A Sl
*3 2|: %(a+2+1),20+g; 1—xy drdy
3 5 —1)t ; .
L T(@Te+e+1) B (Ja—c+i+55 - [§+ia+ (1))
=¢&ij . ,
et (ewy+ [BH]) | Get G- (D),
(neNy LeZ;i,j=0,+1, +£2),

=

where &; ; are given in the table below.

Corollary 3.3. The following integral formulas hold true:

1 rl
/ / yc+€+1 (1 _ x)C—O—E (1 _ y)cfl (1 _ xy)f%fe
0 JO

—2n,a+2n,2c+0+1; 1—y
F ] 0 N dxd
X32|: %(a+2+1),2c+];1—xy ray
(neNg; LeZ;i,j=0,+1, +£2),

(11)

:Ql

where Q1 is defined as in (9).

Corollary 3.4. The following integral formulas hold true:

1 1
/0 /0 yc+é+1 (1 _ m)c—l—é (1 _ y)c—l (1 _ xy)—Qc—e

2n—1,a+2n+1,2¢c+¢+1; 1 -y
F: ’ ) J dxd
X32[ %(a+z+1),20+];1—xy Ty
(neNy LeZ;i,j=0, £1, £2),

(12)

=0

where Qo is defined as in (10).

We conclude this paper by giving further special cases of (9) and (10).
Setting ¢ = j = 0 in (9) and (10) yields the following integral formulas:

1 1
c —LL’C_I _ e+l 1 —2c—¢
/O/Oya )L (1= )+ (1 — ay)

—2n, a+2n, 2c+ 0+ 1; y(1 — z)
(13) x 3FY [ %(a +1),2¢ 1—ay de dy
_L@Te+e+1) (), Ga-ecta)y (o pen
T T(2eri11 5, (3a+3 v
( + £+ ) (C Q)n (20’+ 2)n
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and

1 1
(1 -z c—1 _aN\etHl 1 T —2c—1L
/O /0 Yo (1= 2)" (1 — ) (1 — ap)

(14) [—2n—1,a+2n+1,20+€+1;y(1x)
x 3k3

= | dxd
%(a+1)720; 1—ay Tay

=0 (TLEN();EGZ).

Remark 1. The result (14) is interesting as it can be seen that for all £ € Z,
the value of the double integral is zero.

TABLE 1. Table for Aj;

| 2 | t [ 0 [-t] -2 |

1 1 1

—92 1 1
2(c—1)(a—=b-1)(a=b+1) | (c—=1)(a=b) | 2(c—1) | c—1 | 2(c—1)

1 1

-1 Nab-D) @b = 1 1 1
1 1

0 Ta=b=T)(a=b71) b 1 2 1
1 1

1 4(a—b—1)(a—b+1) 2(a—0) 1 2 2

1
8(c+1)(a—b—-1)(a—b+1) | 2(c+1)(a=b) | 2(c+1) | c+1 c+1

Here
B_22:=cla+b—-1)— (a+1)(b+ 1)+ 2;
B_gp:=(c—a—-1)(c—b—1)+(c—1)(c—2);
B_o_1:=2(c—1)(c—2)—(a—b)(c—b—1);

B_s_2:=2(c—1)(c—2){(2c - 1)(a+b—1) —ala+1) —b(b+1)+2}
—(a—=b—1(a—b+1){(c—1)(2c—a—b—3)+ ab};

Bao :=2c(c+ 1){(2c+1)(a+b—1)—ala—1)—-b(b—-1)}
—(a=b—1(a-b+1{(c+1)(2c—a—b+1)+ ab};

B,L,Q =2(c—1D(a+b—-1)—(a — b)2 + 1;

Bos2 :=a(2c — a) +b(2c — b) — 2c+ 1;
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TABLE 2. Table for B;;

i 2 [ 1 ] 0 | 1 | 2 |
-2 B_22 c—b—1 | B_gp B_2._1 B_s _o
-1 la—b+1 1 1 2c—a+b—-2| B_i_2

0 Bo 1 1 1 Bo._»
1 Bi.2 2c—a+b 1 1 a+b—1
2 Ba2 Ba.1 Bao c—b+1 Ba, o

Bo,—o := a(2c — a) + b(2¢ — b) — 2¢ + 1;
Bio:=2cla+b—1)—(a—b)?+1;
Bay :=2¢(c+1) — (a—b)(c— b+ 1);

Boo:=(c—a+1)(c—b+1)+c(c+1);

By 2:=cla+b—1)—(a—1)(b—-1).

Here
Coo_1:=2(c—1)(c—2)+(a—b)(c—a—1);
C_o _92:=4(2c—a+b-3)(2c+a—b-23)
C1 2:=8%-2c—1)(a+b+7)—(a—0b)>—-T;
Cro =8 +2c(a+b—1)+ (a—b)?—1;
Coo:=—4(2c+a—-b+1)(2c—a+b+1);
Cop:=—2c(c+1)—(a—b)(c—a+1).
Here
Dy yim (a+1){(c—1)(a—1)+2n(a+2n)}
’ (c—=1(a+4n—1)(a+4n+1) ~’
Dy e (a+1)(a—1) .
2T et dnt (et an— 1)
Dy e (a+1){(a—1)(2c—a—1) —4n(a+2n)}
20 = (2c—a—1D(a+4n+1D(a+4n—-1)
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TABLE 3. Table for Cj;

LN 2 | L N
-2 —4 —(c—a-1) | 4 C_2_1 C_o_o
-1 || -(4c—a—-b-13) -1 1 |2¢c+a—-b-2 C_1,-2
0 -8 -1 0 1 8
1 Cip —(2c+a-0)|-1 1 de—a—-0b+1
2 Cop2 Con —4 c—a+1 4

TABLE 4. Table for D; ;

g -2 [ -t [ o[ 1 [ 2 |
2 Do, o Do, 1 Ds o Do Ds2
U e | e | o | Gemtm | D12
0 Do_» | 1 1 Do
“1 | Do | EREERE 0 1 e
-2 D_s_» D_s_1 |D_ap 1 D_s»

_ (a+1){(a—1)(2c—a—1) —8n(a+2n)}

Doy :
21 (2c—a—-1(a+4n+1)(a+4n—1)
Dyo e Noo
22T e+ D2c—a+D2c—a—D(a+4n+ )(at4n—1)’
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where
Noa:=(a+ 1){(a e+ D)2 —a+1)(2—a—1)
—2an(6c+a+5)(2c—a+1)
+4n? (5a* +4a — 5 — 4¢(3¢c — a+4) +64n3(a —|—n)};
a{(c+1)(2c—a) —2n(2c+a+4n+2)}

D1 =
12 (c+1)(2c — a)(a + 4n) ’
2n(a + 2n)
Dy_2:=1— ;
0,-2 (c—=1)(2c—a—-3)’
2n(a + 2n)
Dy :=1-— ;
0.2 (c+1)(2c—a+1)
2n(2c+a+4n — 2)
D_q_o2:=1— ;
b2 (c—1)(2c—a—4)
N_g_»
D_g_o9:=1- :
22 (a—1D)(c—1)(2c—a—-3)2c—a—5)
where
N o 9 :=2an(6c+a—7)(2c — a — 3) — 4n*{5a* — 4a — 21
—4¢(3¢c — a—8)} — 64n3(a + n);
8n(a + 2n)
D_o_1:=1— ;
2l (a—1)(2c—a—3)’
4dn(a + 2n)
D_op:i=1-— ;
20 (a—1)(2c—a—1)’
2n(a + 2n)
Doggi=14——r—""r".
22 (c+1)(a—1)
Here
(a+1)(2c—a—-3)
Eo o=

’ (c—D(atdntD(atant3)
(a+1)(4c —a—3)

b= B T Dt D@t dn 1 3)
Ero 1= 2(a+1) .
’ (a+4n+1)(a +4n +3)’
1= (a+1){(dc+a+3)(2c—a—1) —8n(a+2n+2)};

1= (a+4n+1)(a+4n+3)(2c+1)(2c —a—1)
_(a+1)Q2c+a+4n+3)(2c—a—4n—1)
22" a+dn+ D(a+4n+3)(c+ 1)(2c—a—1)
(c+a+2)(2c—a)—2n(3a—2c+4n+2)

b12:= (c+1)(2c—a)(a+4n+2) ’
£y yim (c+a)(2c—a—4)—2n(3a — 2c+4n +6)
’ ala—2c+4)(c—1) ’
(2c+a+4n—1)(2c —a—4n —5)
E o o= ;

(1-a)(c—1)(2c—a—5) '
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TABLE 5. Table for &; ;

LN -2 ] 1 | 0 ] 1 | 2 |
2 &z 2 &1 & &1 &0
1 c—a—2n—2 2c—a—2 1 2ct+a+4n+2 51 9

(c—1)(a+4n+2) | (2c—1)(a+4n+2) | a+4n+2 | (2¢+1)(a+4n+2) )

1 1 1 1
0 1—c 1-2¢ 0 1+2¢ T+c¢
_ 2c+a+4n 1 a—2c¢ a—c+2n
1 €12 a(1-2c) a a(2c+1) a(c+1)
2 4c—a+1 c—a+1
-2 E 22 €21 T-a T—a@rD) | T=a)(etD

(dc+a—1)(2c—a—3) — 8n(a+2n +2)
(a—1)(a—2c+3)(2c—1)

E o _1:=
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